Open Access
Volume 27, 2023
Page(s) 402 - 460
Published online 08 March 2023
  1. E.S. Allman, C. Matias and J.A. Rhodes Identifiability of parameters in latent structure models with many observed variables. Ann. Stat. 37 (2009) 3099–3132. [CrossRef] [Google Scholar]
  2. A. Azzalini and A. Capitanio, The Skew-Normal and Related Families. Institute of Mathematical Statistics Monographs, Cambridge University Press (2013). [Google Scholar]
  3. Y. Baraud and L. Birgé Rho-estimators revisited: General theory and applications. Ann. Stat. 46 (2018) 3767–3804. [Google Scholar]
  4. Y. Baraud, L. Birgé and M. Sart, A new method for estimation and model selection: rho-estimation. Invent. Math. 207 (2017) 425–517. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Baraud and J. Chen, Robust estimation of a regression function in exponential families (2020). [Google Scholar]
  6. L. Birgé Approximation dans les espaces métriques et théorie de l’estimation. Zeitsch. Wahrscheinlichkeitstheorie Verwand. Gebiete 65 (1983). [Google Scholar]
  7. L. Birgé On estimating a density using Hellinger distance and some other strange facts. Prob. Theory Related Fields 71 (1986). [Google Scholar]
  8. I. Diakonikolas, D.M. Kane and A. Stewart, List-decodable robust mean estimation and learning mixtures of spherical Gaussians, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018. Association for Computing Machinery, New York, NY, USA (2018) pp. 1047–1060. [CrossRef] [Google Scholar]
  9. C.R. Doss and J.A. Wellner Global rates of convergence of the MLEs of log-concave and s-concave densities. Ann. Stat. 44 (2016) 954–981. [Google Scholar]
  10. N. Doss, Y. Wu, P. Yang and H.H. Zhou, Optimal estimation of high-dimensional location Gaussian mixtures (2020). [Google Scholar]
  11. B. Everitt and D.J. Hand, Finite mixture distributions. Chapman and Hall London; New York (1981). [Google Scholar]
  12. S. Frühwirth-Schnatter, Finite Mixture and Markov Switching Models. Springer Series in Statistics, Springer New York (2006). [Google Scholar]
  13. S. Gadat, C. Marteau and C. Maugis-Rabusseau Parameter recovery in two-component contamination mixtures: The L2 strategy. Ann. l'Institut Henri Poincaré, Prob. Stat. 56 (2020) 1391–1418. [Google Scholar]
  14. C. Genovese and L. Wasserman, Convergence rates for the Gaussian mixture sieve, Ann. Stat. 28 (2000) 10.1214/aos/1015956709. [CrossRef] [Google Scholar]
  15. S. Ghosal and A.W. van der Vaart, Entropies and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities, Ann. Statist. 29 (2001) 1233–1263. [MathSciNet] [Google Scholar]
  16. P. Heinrich and J. Kahn Strong identifiability and optimal minimax rates for finite mixture estimation. Ann. Stat. 46 (2018) 2844–2870. [CrossRef] [Google Scholar]
  17. I.A. Ibragimov and H.R. Z., Statistical Estimation. Springer, New York (1981). [Google Scholar]
  18. W. Kruijer, J. Rousseau and A. van der Vaart Adaptive Bayesian density estimation with location-scale mixtures. Electr. J. Stat. 4 (2010) 1225–1257. [Google Scholar]
  19. P. Massart, Concentration Inequalities and Model Selection. Vol. 1896 of Lect. Notes Math. Springer, Berlin, Heidelberg (2007). [Google Scholar]
  20. C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: PS 15 (2011) 41–68. [CrossRef] [EDP Sciences] [Google Scholar]
  21. C. Maugis-Rabusseau and B. Michel Adaptive density estimation for clustering with Gaussian mixtures. ESAIM: PS 17 (2013) 698–724. [CrossRef] [EDP Sciences] [Google Scholar]
  22. G. McLachlan and D. Peel, Finite mixture models. Vol. 44 of Wiley Series in Probability and Statistics. Wiley (2000). [CrossRef] [Google Scholar]
  23. E. Meijer and J.Y. Ypma, A simple identification proof for a mixture of two univariate normal distributions. J. Classif. 25 (2008) 113–123. [CrossRef] [Google Scholar]
  24. R.T. Rockafellar, Convex Analysis. Princeton University Press (2015). [Google Scholar]
  25. T. Sapatinas Identifiability of mixtures of power-series distributions and related characterizations. Ann. Inst. Stat. Math. 47 (1995) 447–459. [CrossRef] [Google Scholar]
  26. H. Teicher Identifiability of mixtures. Ann. Math. Stat. 32 (1961) 244–248. [CrossRef] [Google Scholar]
  27. D. Titterington, A. Smith and U. Makov, Statistical Analysis of Finite Mixture Distributions, Applied section. Wiley (1985). [Google Scholar]
  28. A.W. van der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes. Springer, New York (1996). [Google Scholar]
  29. Y. Wu and P. Yang Optimal estimation of Gaussian mixtures via denoised method of moments. Ann. Stat. 48 (2020) 1981–2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.