Issue |
ESAIM: PS
Volume 21, 2017
|
|
---|---|---|
Page(s) | 34 - 55 | |
DOI | https://doi.org/10.1051/ps/2016026 | |
Published online | 09 March 2017 |
Estimating the conditional density by histogram type estimators and model selection
Univ Lyon, UJM-Saint-Etienne, CNRS, Institut Camille Jordan UMR 5208, 42023, Saint-Etienne, France.
mathieu.sart@univ-st-etienne.fr
Received: 13 April 2016
Revised: 27 October 2016
Accepted: 16 November 2016
We propose a new estimation procedure of the conditional density for independent and identically distributed data. Our procedure aims at using the data to select a function among arbitrary (at most countable) collections of candidates. By using a deterministic Hellinger distance as loss, we prove that the selected function satisfies a non-asymptotic oracle type inequality under minimal assumptions on the statistical setting. We derive an adaptive piecewise constant estimator on a random partition that achieves the expected rate of convergence over (possibly inhomogeneous and anisotropic) Besov spaces of small regularity. Moreover, we show that this oracle inequality may lead to a general model selection theorem under very mild assumptions on the statistical setting. This theorem guarantees the existence of estimators possessing nice statistical properties under various assumptions on the conditional density (such as smoothness or structural ones).
Mathematics Subject Classification: 62G05 / 62G07
Key words: Adaptive estimation / conditional density / histogram / model selection / robust tests
© EDP Sciences, SMAI, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.