Free Access
Issue
ESAIM: PS
Volume 21, 2017
Page(s) 34 - 55
DOI https://doi.org/10.1051/ps/2016026
Published online 09 March 2017
  1. N. Akakpo, Adaptation to anisotropy and inhomogeneity via dyadic piecewise polynomial selection. Math. Methods Stat. 21 (2012) 1–28. [CrossRef] [Google Scholar]
  2. N. Akakpo and C. Lacour, Inhomogeneous and anisotropic conditional density estimation from dependent data. Electr. J. Stat. 5 (2011) 1618–1653. [CrossRef] [Google Scholar]
  3. Y. Baraud, Estimator selection with respect to Hellinger-type risks. Probab. Theory Relat. Fields 151 (2011) 353–401. [CrossRef] [Google Scholar]
  4. Y. Baraud, Estimation of the density of a determinantal process. Confluentes Math. 5 (2013) 3–21. [CrossRef] [MathSciNet] [Google Scholar]
  5. Y. Baraud and L. Birgé, Estimating composite functions by model selection. Ann. Inst. Henri Poincaré, Probab. Stat. 50 (2014) 285–314. [CrossRef] [MathSciNet] [Google Scholar]
  6. Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat. Fields 143 (2009) 239–284. [CrossRef] [Google Scholar]
  7. Y. Baraud, L. Birgé and M. Sart, A new method for estimation and model selection: ρ-estimation. Invent. Math. (2016) 1–93. [Google Scholar]
  8. K. Bertin, C. Lacour and V. Rivoirard, Adaptive estimation of conditional density function. Ann. Inst. Henri Poincaré, Probab. Stat. 52 (2016) 939–980. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré, Probab. Stat. 42 (2006) 273–325. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Birgé, Model selection for poisson processes. In Asymptotics: particles, processes and inverse problems. Vol. 55 of IMS Lect. Notes Monogr. Ser. IMS, Beachwood, OH (2007) 32–64. [Google Scholar]
  11. L. Birgé, Robust tests for model selection. In From Probability to Statistics and Back: High-Dimensional Models and Processes. A Festschrift in Honor of Jon Wellner. Vol. 9. IMS Collections (2012) 47–64. [Google Scholar]
  12. A.-K. Bott and M. Kohler, Adaptive estimation of a conditional density. Inter. Stat. Rev. (2015). [Google Scholar]
  13. E. Brunel, F. Comte and C. Lacour, Adaptive estimation of the conditional density in the presence of censoring. Sankhyā: Indian J. Stat. (2007) 734–763. [Google Scholar]
  14. G. Chagny, Warped bases for conditional density estimation. Math. Methods Stat. 22 (2013) 253–282. [CrossRef] [Google Scholar]
  15. S. Cohen and E. Le Pennec, Conditional Density Estimation by Penalized Likelihood Model Selection and Applications. Preprint arXiv:1103.2021 (2011). [Google Scholar]
  16. J.G. De Gooijer and D. Zerom, On conditional density estimation. Stat. Neerlandica 57 (2003) 159–176. [CrossRef] [Google Scholar]
  17. L. Devroye and G. Lugosi, A universally acceptable smoothing factor for kernel density estimates. Ann. Stat. (1996) 2499–2512. [Google Scholar]
  18. S. Efromovich, Conditional density estimation in a regression setting. Ann. Stat. 35 (2007) 2504–2535. [CrossRef] [Google Scholar]
  19. J. Fan, L. Peng, Q. Yao and W. Zhang, Approximating conditional density functions using dimension reduction. Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 445–456. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Fan, Q. Yao and H. Tong, Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83 (1996) 189–206. [CrossRef] [Google Scholar]
  21. J. Fan and T. Yim, A data-driven method for estimating conditional densities. Biometrika 91 (2004) 819–834. [CrossRef] [Google Scholar]
  22. O.P. Faugeras, A quantile-copula approach to conditional density estimation. J. Multivariate Anal. 100 (2009) 2083–2099. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Györfi and M. Kohler, Nonparametric estimation of conditional distributions. IEEE Trans. Inform. Theory 53 (2007) 1872–1879. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Hall and Q. Yao, Approximating conditional distribution functions using dimension reduction. Ann. Stat. 33 (2005) 1404–1421. [CrossRef] [Google Scholar]
  25. R.J. Hyndman, D.M. Bashtannyk and G.K. Grunwald, Estimating and visualizing conditional densities. J. Comput. Graphical Stat. 5 (1996) 315–336. [Google Scholar]
  26. R.J. Hyndman and Q. Yao, Nonparametric estimation and symmetry tests for conditional density functions. J. Nonparametric Stat. 14 (2002) 259–278. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Massart, Concentration inequalities and model selection. École d’été de Probabilités de Saint-Flour. Vol. 1896 of Lect. Notes Math. Springer Berlin/Heidelberg (2003). [Google Scholar]
  28. M. Rosenblatt, Conditional probability density and regression estimators. In Multivariate Analysis, II. Proc. of Second Internat. Sympos., Dayton, Ohio, 1968. Academic Press, New York (1969) 25–31. [Google Scholar]
  29. M. Sart, Estimation of the transition density of a Markov chain. Ann. Instit. Henri Poincaré, Probab. Stat. 50 (2014) 1028–1068. [CrossRef] [Google Scholar]
  30. M. Sart, Model selection for poisson processes with covariates. ESAIM: PS 19 (2015) 204–235. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.