Free Access
Volume 21, 2017
Page(s) 1 - 33
Published online 27 February 2017
  1. D. Aldous, The continuum random tree. I. Ann. Probab. 19 (1991) 1–28. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  2. M. Ba, E. Pardoux and A.B. Sow, Binary trees, exploration processes, and an extended ray-knight theorem. J. Appl. Probab. 49 (2012) 210–225. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  3. P. Billingsley, Probability and Measure, 3nd edition. John Wiley, New York (1995). [Google Scholar]
  4. P. Billingsley, Convergence of Probability Measures, 2nd edition. John Wiley, New York (1999). [Google Scholar]
  5. E.Çınlar, Probability and Stochastics. Graduate Texts in Mathematics. Vol. 261. Springer (2011). [Google Scholar]
  6. J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Process. Relat. Fields 14 (2008) 309–326. [Google Scholar]
  7. A. Grimvall, On the convergence of sequences of branching processes. Ann. Probab. 2 (1974) 1027–1045. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  8. A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986) 20–65. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  9. J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: The exploration process. Ann. probab. 26 (1998) 213–252. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  10. V. Le, E. Pardoux and A. Wakolbinger, Trees under attack: a Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Relat. Fields 155 (2013) 583–619. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  11. S. Méléard and D. Villemonais, Quasi-stationnary distributions and population processes. Probab. Surv. 9 (2012) 340−410. [CrossRef] [MathSciNet] [Google Scholar]
  12. E. Pardoux, Probabilistic models of population evolution scaling limits and interactions. Springer (2015). [Google Scholar]
  13. P.-L. Lions and A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37 (1984) 511–537. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  14. P.E. Protter, Stochastic Integration and Differential Equations: Version 2.1. Vol. 21. Springer (2004). [Google Scholar]
  15. D.W. Stroock and S.S. Varadhan, Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24 (1971) 147–225. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.