Open Access
Volume 27, 2023
Page(s) 345 - 401
Published online 27 February 2023
  1. A. Abakuks, An optimal isolation policy for an epidemic. J. Appi. Probab. 10 (1973) 247–262. [CrossRef] [Google Scholar]
  2. H. Andersson and T. Britton, Stochastic epidemic models and their statistical analysis. Springer Science & Business Media (2012), lecture Notes in Statistics (LNS, Volume 151). [Google Scholar]
  3. F. Ball, A unified approach to the distribution of total size and total area under the trajectory of infectives in epidemic models. Adv. Appi. Probab. 18 (1986) 289–310. [CrossRef] [Google Scholar]
  4. F. Ball and D. Clancy, The final size and severity of a generalised stochastic multitype epidemic model. Adv. Appi. Probab. 25 (1993) 721–736. [CrossRef] [Google Scholar]
  5. D. Bichara and A. Iggidr, Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol. 77 (2018) 107–134. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  6. P. Billingsley, Convergence of Probability Measures. John Wiley & Sons (1999). [Google Scholar]
  7. L. Bolzoni, E. Bonacini, R. Della Marca and M. Groppi, Optimal control of epidemic size and duration with limited resources. Math. Biosci. 315 (2019) 108232. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Brauer, Ona nonlinear integral equation for population growth problems. SIAM J. Math. Anal. 6 (1975) 312–317. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Brauer, C. Castillo-Chavez and Z. Feng, Mathematical Models in Epidemiology. Springer (2019). [Google Scholar]
  10. T. Britton and E. Pardoux, Stochastic epidemics in a homogeneous community, Stochastic Epidemic Models with Inference (T. Britton and E. Pardoux eds). Part I. Lecture Notes in Math. 2255 (2019) 1–120. [Google Scholar]
  11. E. Çınlar, Probability and Stochastics, Springer Science & Business Media (2011). [Google Scholar]
  12. D. Clancy, SIR epidemic models with general infectious period distribution. Stat. Probab. Lett. 85 (2014) 1–5. [CrossRef] [Google Scholar]
  13. K.L. Cooke, An epidemic equation with immigration. Math. Biosci. 29 (1976) 135–158. [CrossRef] [MathSciNet] [Google Scholar]
  14. O. Diekmann, Limiting behaviour in an epidemic model. Noniinear Anai.: Theory Methods Appi. 1 (1977) 459–470. [CrossRef] [Google Scholar]
  15. S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence. John Wiley & Sons, 2nd edition (2009). [Google Scholar]
  16. R. Forien, G. Pang and E. Pardoux, Epidemic models with varying infectivity. SIAM J. Appi. Math. 81 (2021) 1893–1930. [CrossRef] [Google Scholar]
  17. R. Forien, G. Pang and E. Pardoux, Estimating the state of the Covid-19 epidemic in France using a model with memory. Royal Soc. Open Sci. 8 (2021) 202327. [CrossRef] [Google Scholar]
  18. A. Gomez-Corral and M. Lopez-García, On SIR epidemic models with generally distributed infectious periods: number of secondary cases and probability of infection. Int. J. Biomath. 10 (2017) 1750024. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.G. Hahn, Central limit theorems in D[0,1], Zeitsch. Wahrscheinlichkeitstheorie und verwandte Gebiete 44 (1978) 89–101. [CrossRef] [Google Scholar]
  20. E. Hansen and T. Day, Optimal control of epidemics with limited resources. J. Math. Biol. 62 (2011) 423–451. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. H.W. Hethcote and P. van den Driessche, An SIS epidemic model with variable population size and a delay. J. Math. Biol. 34 (1995) 177–194. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. W. Huang, K.L. Cooke and C. Castillo-Chavez, Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J. Appi. Math. 52 (1992) 835–854. [CrossRef] [Google Scholar]
  23. A. Iggidr, G. Sallet and M.O. Souza, On the dynamics of a class of multi-group models for vector-borne diseases. J. Math. Anal. Appi. 441 (2016) 723–743. [CrossRef] [Google Scholar]
  24. P. Magal and C. McCluskey, Two-group infection age model including an application to nosocomial infection. SIAM J. Appl. Math. 73 (2013) 1058–1095. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Magal, O. Seydi and G. Webb, Final size of an epidemic for a two-group SIR model. SIAM J. Appi. Math. 76 (2016) 2042–2059. [CrossRef] [Google Scholar]
  26. P. Magal, O. Seydi and G. Webb, Final size of a multi-group SIR epidemic model: irreducible and non-irreducible modes of transmission. Math. Biosci. 301 (2018) 59–67. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [CrossRef] [MathSciNet] [Google Scholar]
  28. R.K. Miller, Nolinear Volterra Integral Equations. Benjiamin Press, Menlo Park, Cal. (1971). [Google Scholar]
  29. G. Pang and E. Pardoux, Functional central limit theorems for epidemic models with varying infectivity. Stochastics (2022). DOI: 10.1080/17442508.2022.2124870. [Google Scholar]
  30. G. Pang and E. Pardoux, Functional limit theorems for non-Markovian epidemic models. Ann. Appi. Probab. 32 (2022) 1615–1665. [Google Scholar]
  31. G. Pang and E. Pardoux, Functional law of large numbers and PDEs for epidemic models with infection-age dependent infectivity. To appear Appi. Math. Optim. (2023), arXiv:2106.03758. [Google Scholar]
  32. M. Prague, L. Wittkop, Q. Clairon, D. Dutartre, R. Thiebaut and B.P. Hejblum, Population modeling of early COVID-19 epidemic dynamics in French regions and estimation of the lockdown impact on infection rate. (2020). [Google Scholar]
  33. G. Reinert, The asymptotic evolution of the general stochastic epidemic. Ann. Appi. Probab. 5 (1995) 1061–1086. [Google Scholar]
  34. N.H. Shah, N. Sheoran, E. Jayswal, D. Shukla, N. Shukla, J. Shukla and Y. Shah, Modelling COVID-19 transmission in the United States through interstate and foreign travels and evaluating impact of governmental public health interventions. J. Math. Anai. Appi. 514 (2022) 124896. [CrossRef] [Google Scholar]
  35. P. van den Driessche and J. Watmough, A simple SIS epidemic model with a backward bifurcation. J. Math. Bioi. 40 (2000) 525–540. [CrossRef] [PubMed] [Google Scholar]
  36. F.J. Wang, Limit theorems for age and density dependent stochastic population models. J. Math. Bioi. 2 (1975) 373–400. [CrossRef] [Google Scholar]
  37. F.J. Wang, A central limit theorem for age-and density-dependent population processes. Stoch. Process. Appi. 5 (1977) 173–193. [CrossRef] [Google Scholar]
  38. F.J. Wang, Gaussian approximation of some closed stochastic epidemic models. J. Appi. Probab. 14 (1977) 221–231. [CrossRef] [Google Scholar]
  39. K.H. Wickwire, Optimal isolation policies for deterministic and stochastic epidemics. Math. Biosci. 26 (1975) 325–346. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.