Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 324 - 344
DOI https://doi.org/10.1051/ps/2023001
Published online 27 February 2023
  1. M. Benaïm, Stochastic persistence. Preprint arXiv:1806.08450 (2018). [Google Scholar]
  2. M. Benaïm, T. Hurth and E. Strickler, A user-friendly condition for exponential ergodicity in randomly switched environments. Electr. Commun. Probab. 23 (2018) 12. [Google Scholar]
  3. M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt, Qualitative properties of certain piecewise deterministic Markov processes. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 1040–1075. [MathSciNet] [Google Scholar]
  4. M. Benaïm and C. Lobry, Lotka-Volterra with randomly fluctuating environments or “How switching between beneficial environments can make survival harder”. Ann. Appl. Probab. 26 (2016) 3754–3785. [MathSciNet] [Google Scholar]
  5. M. Benaïm and E. Strickler, Random switching between vector fields having a common zero. Ann. Appl. Probab. 29 (2019) 326–375. [MathSciNet] [Google Scholar]
  6. M. Benaïm, A. Bourquin and D.H. Nguyen, Stochastic persistence in degenerate stochastic Lotka-Volterra food chains. Preprint arXiv:2012.01215 (2020). [Google Scholar]
  7. M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B 46 (1984) 353–388. [MathSciNet] [Google Scholar]
  8. C. Faithfull, M. Huss, T. Vrede and A.-K. Bergstrom, Bottom-up carbon subsidies and top-down predation pressure interact to affect aquatic food web structure. Oikos 120 (2011) 311–320. [CrossRef] [Google Scholar]
  9. T.C. Gard and T.G. Hallam, Persistence in food webs. I. Lotka-Volterra food chains. Bull. Math. Biol. 41 (1979) 877–891. [MathSciNet] [Google Scholar]
  10. A. Hening and D.H. Nguyen, Persistence in stochastic Lotka-Volterra food chains with intraspecific competition. Bull. Math. Biol. 80 (2018) 2527–2560. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. A. Hening and D.H. Nguyen, Stochastic Lotka-Volterra food chains. J. Math. Biol. 77 (2018) 135–163. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. A. Hening, D.H. Nguyen and P. Chesson, A general theory of coexistence and extinction for stochastic ecological communities. J. Math. Biol. 82 (2021) Paper No. 56, 76. [Google Scholar]
  13. A. Hening and E. Strickler, Ona predator-prey system with random switching that never converges to its equilibrium. SIAM J. Math. Anal. 51 (2019) 3625–3640. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics. Cambridge University Press (1998). [Google Scholar]
  15. D.J. Moriarty, The role of microorganisms in aquaculture ponds. Aquaculture 151 (1997) 333–349. [CrossRef] [Google Scholar]
  16. D.H. Nguyen and E. Strickler, A method to deal with the critical case in stochastic population dynamics. SIAM J. Appl. Math. 80 (2020) 1567–1589. [CrossRef] [MathSciNet] [Google Scholar]
  17. S.J. Schreiber, Persistence for stochastic difference equations: a mini-review. J. Differ. Equ. Appl. 18 (2012) 1381–1403. [CrossRef] [Google Scholar]
  18. S.J. Schreiber, M. Benaïm and K.A.S. Atchadé, Persistence in fluctuating environments. J. Math. Biol. 62 (2011) 655–683. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. E. Strickler, Persistance de processus de Markov déterministes par morceaux, Ph.D. thesis, Université de Neuchâtel (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.