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ROBUST ESTIMATION IN FINITE MIXTURE MODELS∗

Alexandre Lecestre**

Abstract. We observe a n-sample, the distribution of which is assumed to belong, or at least to be
close enough, to a given mixture model. We propose an estimator of this distribution that belongs
to our model and possesses some robustness properties with respect to a possible misspecification
of it. We establish a non-asymptotic deviation bound for the Hellinger distance between the target
distribution and its estimator when the model consists of a mixture of densities that belong to VC-
subgraph classes. Under suitable assumptions and when the mixture model is well-specified, we derive
risk bounds for the parameters of the mixture. Finally, we design a statistical procedure that allows us
to select from the data the number of components as well as suitable models for each of the densities
that are involved in the mixture. These models are chosen among a collection of candidate ones and
we show that our selection rule combined with our estimation strategy result in an estimator which
satisfies an oracle-type inequality.
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1. Introduction

Mixture models are a flexible tool for modeling heterogeneous data, e.g. from a population consisting of
multiple hidden homogeneous subpopulations. Finite mixture models are models containing distribution of the
form

Pw,F =

K∑
k=1

wkFk, (1.1)

where K ≥ 2, each Fk belongs to a specific class of probability distributions (e.g. normal distributions in the
case of Gaussian mixture models) and w belongs to the simplex WK =

{
w ∈ [0, 1]K ;w1 + · · ·+ wk = 1

}
. For a

complete introduction to mixture models and an overview of the different applications we refer to the books of
Mclachlan and Peel [22] and Frühwirth-Schnatter [12].

Assume we have a sample X := (X1, . . . , Xn) of i.i.d. data, each coordinate following the probability dis-
tribution P ∗. The majority of the statistical methods based on finite mixture models aim to solve one of the
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following problems: density estimation (estimation of P ∗), parameter estimation (estimation of w∗ and/or F ∗

assuming P ∗ = Pw∗,F∗) and clustering. The monographs of Everitt and Hand [11] or Titterington et al. [27]
provide a good overview of the different estimation methods that have been developed for mixture models such
as maximum likelihood, minimum chi-square, moments method and Bayesian approaches. Although algorithms
are numerous, theoretical guarantees are mostly asymptotic and restricted to very specific situations. To our
knowledge, only a few non-asymptotic results have been established in the case of density estimation based on
Gaussian Mixture Models (GMMs). The approximation and entropy properties of Gaussian mixture sieves have
been investigated by Kruijer et al. [18], Ghosal and van der Vaart [15] and Genovese and Wasserman [14] where
bounds on the convergence rate are given for the MLE and Bayesian estimators. Similarly, Maugis and Michel
[21] use a penalized version of the MLE to build a Gaussian mixture estimator with non asymptotic adaptive
properties proven in [20]. However, those results rely on relatively strong assumptions and estimators are not
proved to be robust to small departures from those assumptions.

This paper aims to provide non-asymptotic results in a very general setting. In our framework, the data
are assumed to be independent but not necessarily i.i.d. Our mixture model consists of probabilities of the
form (1.1) where the Fk admit densities, called emission densities, that belong to classes of function that are
VC-subgraph. We investigate the performances of ρ-estimators, as defined by Baraud and Birgé [3], on finite
mixture models. This paper only focuses on the theoretical aspects and performances. We do not consider here
the problem of computing estimators in practice. Our main result, Theorem 3.1, is an exponential deviation
inequality for the risk of the estimator P̂ , which is measured with an Hellinger-type loss. We get an upper bound
on the risk that is the sum of two terms. The first one is an approximation term which provides a measure of
the distance between the true distribution of the data and our mixture model. The second term is a complexity
term that depends on the classes containing the emission densities and which is proportional to the sum of their
VC-indices. We deduce from this deviation bound that the estimator is not only robust with respect to model
misspecification but also to contamination and the presence of outliers among the data set. Dealing with models
that may be approximate allows to build estimators that possess properties over wider classes of distribution.
Ghosal and Van der Vaart [15] used finite location-scale Gaussian mixtures to approximate general Gaussian
mixtures with compactly supported mixing distribution. They consider mixtures with scale parameters lying
between two constants that depend on the true distribution. By using a similar approximation (see Prop. 3.5),
we show in Theorem 3.6 that our estimator achieves the same rate of convergence but without any restriction
on the scale parameters so that the model we consider does not depend on the true mixing distribution. In
particular, our result is insensitive to translation or rescaling.

Under suitable identifiability assumptions and when the distribution of the data belongs to our model, hence
is of the form (1.1), we also analyze the performance of our estimators of the parameters w1, . . . , wK and
F1, . . . , FK . In order to establish convergence rates, we relate the Hellinger distance between the distribution of
the data and its estimator to a suitable distance between the corresponding parameters. A general technique
is using Fisher’s information and results of Ibragimov and Has’minskĭı [17] for regular parametric models. We
can also use other results specific to parameter estimation in mixture models such as what Gadat et al. [13]
proved in the context of two component mixtures with one known component. In both situations, we obtain, up
to a logarithmic parameter, the usual 1/

√
n-rate of convergence for regular parametric models. We also provide

with Theorem 3.13 the example of a parametric model for which our techniques allow us to establish faster
convergence rates while classical methods based on the likelihood or the least-squares fail to apply and hence
give nothing.

In many applications, starting with a single mixture model may be restrictive and a more reasonable approach
is to consider candidate ones for estimating the number of components of the mixture and proposing suitable
models for the emission densities. To tackle this problem, we design a model selection procedure from which we
establish, under suitable assumptions, an oracle-type inequality. We consider several illustrations of this strategy.
For example, we use a penalized estimator to select the number of components of a Gaussian mixture estimator
and obtain similar adaptivity results as Maugis and Michel [20]. We also consider a model with a fixed number
of components but each emission density can either belong to the Gaussian or to the Cauchy location-scale
family. We prove that if we know the number of components, we can estimate consistently the proportions of
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Gaussian and Cauchy components as well as their location and scale parameters. To our knowledge, this result
is the first of its kind.

The extension of the theory of ρ-estimation to mixture models is based on Proposition A.1 below. The proof of
this result relies on an upper bound for the expectation of the supremum of an empirical process over a mixture
of VC-subgraph classes. It generalizes the result that was previously established for a single VC-subgraph class.
The key argument in the proof is the uniform entropy property of VC-subgraph classes that still holds for the
overall density mixture model with lower bounded weights.

The paper is organized as follows. We describe our statistical framework in Section 2. In Section 3, we present
the construction of the estimator on a single mixture model. We state the general result for density estimation
on a single model and illustrate the performance of the estimator on the specific example of GMMs. The problem
of estimating the parameters of the mixture is addressed in the Section 3.5. Finally, Section 4 is devoted to
model selection criterion and the properties of the estimator on the selected model. The appendix contains
all the proofs that are gathered in the same sections when they are related. Those sections include the main
results, density estimation, the parametric estimation in regular parametric models, the case of two-component
mixtures with one known component and the lemmas.

2. The statistical framework

We observe n independent random variables X1, X2, . . . , Xn with respective marginal distributions
P ∗1 , P

∗
2 , . . . , P

∗
n on the measurable space (X ,X ). We model the joint distribution P∗ = P ∗1 ⊗ P ∗2 ⊗ · · · ⊗ P ∗n

of X = (X1, X2, . . . , Xn) by a probability of the form P
⊗n

doing as if the observations were i.i.d. with com-
mon distribution P . We assume that P is a mixture of the form (1.1) where K is a positive integer, the wk
some positive weights that satisfy

∑K
k=1 wk = 1, and Fk probability distributions. In order to model each of

these probabilities we introduce a collection
{
F k,λ; k ≥ 1, λ ∈ Λk

}
of possible models and assume that for each

k ∈ {1, . . . ,K}, Fk belongs to ∪λ∈ΛkF k,λ. We denote by QK the family of distributions of the previous form.
For each k ≥ 1, we call Fk an emission probability, F k,λ an emission model, and Ek =

{
F k,λ;λ ∈ Λk

}
an

emission family. Based on the observation of X, our aim is to design an estimator P̂ of P of the form

P̂ =

K̂∑
k=1

ŵkF̂k ∈
⋃
K≥1

QK (2.1)

where K̂, (ŵk)1≤k≤K̂ and (F̂k)k are estimators of K, (wk)k and (Fk)k respectively. There is a lot of possibilities
for the collections Λk, depending on the estimation strategy (nonparametric, polynomial basis, wavelets, ...).
We illustrate it in details with the following example of usual parametric models on R.

Example 2.1. Let us take Λk = {1, 2, 3} with

� the Gaussian location-scale family,

F k,1 = G = {N (µ, σ) ;µ ∈ R, σ > 0} ; (2.2)

� the Cauchy location-scale family,

F k,2 = C = {Cauchy (µ, σ) ;µ ∈ R, σ > 0} ;

� and the Laplace location-scale family,

F k,3 = L = {Laplace (µ, σ) ;µ ∈ R, σ > 0} .
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The classical situation that has been considered in the literature corresponds to the case where the collection{
F k,λ; k ≥ 1, λ ∈ Λk

}
reduces to a single emission model F , for example the family of Gaussian distributions,

and the problem is to estimate K and the emission probabilities Fk under the assumption that they all belong
to F . This assumption is quite restrictive and we rather consider a collection Ek of candidate models for Fk that
may even depend on k. We say that Ek is simple when it reduces to a single emission model F k and composite
otherwise.

In order to evaluate the performance of the estimator P̂ , we introduce on the set PPP of all product probabilities
on (X n,X⊗n) the Hellinger-type distance h defined by

h(Q,Q′) =

√√√√ n∑
i=1

h2(Qi, Q′i), for Q =

n⊗
i=1

Qi,Q
′ =

n⊗
i=1

Q′i ∈PPP, (2.3)

where h is the Hellinger distance on the set P of probability distributions on (X ,X ). We recall that for Q, Q′

in P

h2(Q,Q′) =
1

2

∫ (√
dQ

dµ
−

√
dQ′

dµ

)2

dµ,

where µ is a measure that dominates both Q and Q′, the result being independent of µ.

Assumption 1. For all k ≥ 1, the set Λk is at most countable (which means finite or countable) and such that
for all λ in Λk, F k,λ contains an at most countable subset Fk,λ which is dense in F k,λ with respect to the
Hellinger distance h.

This assumption is only made for technical reasons, i.e. it ensures the measurability of the different objects
considered in the proofs. But it is not really restrictive as, from a very practical point of view, one would
only deal with rational numbers which already restrict to countable models. Moreover, one can check that
Fk,1 = {N (µ, σ);µ ∈ Q, σ ∈ Q ∩ (0,∞)} satisfy our assumption in the context of Example 2.1. It holds as well
for Fk,2 and Fk,3 with the same construction. Given Assumption 1 we can fix some notation. The countability
condition implies that there exists a σ-finite measure µ that dominates all the F k,λ for k ≥ 1 and λ ∈ Λk.
Throughout this paper, we fix such a measure µ and associate to each emission model F k,λ a family of density
distributions Fk,λ such that F k,λ =

{
f · µ; f ∈ Fk,λ

}
. In all the different examples considered in the rest of

the paper µ is the Lebesgue measure. As explained, Assumption 1 is necessary for very technical reasons. Next
assumption allows to bound the “dimension” of the model (see the introduction or Prop. A.1).

Assumption 2. For all k ≥ 1 and λ ∈ Λk, the family of density distributions Fk,λ is VC-subgraph with
VC-index smaller than or equal to Vk,λ ≥ 1.

In order to avoid too much technicality in the core of this paper, we dedicated Section F to VC-subgraph
classes of functions with the definition and proofs of the different results. The next lemma shows that the VC-
index corresponds to what we expect as the “dimension” of the model in the case of multivariate for normal
distributions.

Lemma 2.2. Let d ≥ 1. Let Cov+∗(d) be the set of d× d symmetric and positive-definite matrices. For µ ∈ Rd
and Σ ∈ Cov+∗(d), we denote by gµ,Σ the density function of N (µ,Σ) with respect to the Lebesgue measure given
by

gµ,Σ(x) :=
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.
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Let Gd be the location-scale family of densities given by Gd :=
{
gµ,Σ;µ ∈ Rd,Σ ∈ Cov+∗

}
. For a fixed Σ, we

denote by Gloc(Σ) the associated location family given by Gloc(Σ) :=
{
gµ;Σ;µ ∈ Rd

}
. The sets Gd and Gloc(Σ)

are VC-subgraph with VC-index bounded by 3 + d(d+3)
2 and 3 + d respectively.

The dependence in d is linear and quadratic for the location family and location-scale family respectively, as
for the number of parameters needed to describe each class. Throughout this paper we shall use the following
notation. For P = P1 ⊗ · · · ⊗ Pn ∈PPP and A ⊂P, we write

h2 (P,A ) = inf
Q∈A

h2
(
P, Q⊗n

)
= inf
Q∈A

n∑
i=1

h2(Pi, Q).

For x ∈ R, bxc is the only integer satisfying bxc ≤ x < bxc+ 1 and similarly dxe denotes the integer satisfying
dxe − 1 < x ≤ dxe. Moreover, if x > 0 we write log+(x) = log(x) ∨ 0. If A is a finite set, we denote its cardinal
by |A| and if A is infinite, we write |A| =∞. For k in N∗, we denote by [k] the set {1, 2, . . . , k}. The notation
C(θ) will mean that the constant C = C(θ) depends on the parameter or set of parameters θ.

3. Estimation on a mixture model based on simple emission
families

In this section, we assume that the Ek =
{
F k

}
are simple for all k ≥ 1 and that P belongs to QK for some

known value of K ≥ 1. This means that we know that P is a mixture of at most K emission probabilities
F1, . . . , FK and that Fk belongs to F k for all k ∈ [K]. Under Assumption 2, we denote by Vk the VC-index of
F k.

3.1. Construction of the estimator on QK

For δ in (0, 1/K], we define the subset QK,δ of QK by

QK,δ :=

{
K∑
k=1

wkFk ∈ QK ;w ∈ WK ∩ ([δ, 1] ∩Q)
K
, Fk ∈ Fk

}
(3.1)

where the Fk are the countable and dense subsets of F k provided by Assumption 1. We associate to QK,δ the

family QK,δ of densities with respect to µ and the ρ-estimator P̂δ of P based on the family QK,δ. We recall that

P̂δ is defined as follows. Given

ψ :
[0,+∞] → [−1, 1]
x 7→ x−1

x+1

, (3.2)

we set for x = (x1, ..., xn) ∈X n and q, q′ ∈ QK,δ

T(x, q, q′) :=

n∑
i=1

ψ

(√
q′ (xi)

q (xi)

)
, (3.3)

with the convention 0/0 = 1 and a/0 = +∞ for all a > 0, and

Υ(X, q) := sup
q′∈QK,δ

T(X, q, q′). (3.4)
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The ρ-estimator P̂δ is any measurable element of the closure (with respect to the Hellinger distance) of the set

EEE (ψ,X) :=

{
Q = q · µ; q ∈ QK,δ,Υ(X, q) < inf

q′∈QK,δ
Υ(X, q′) + 11.36

}
. (3.5)

This construction follows [3] and the constant 11.36 is given by (7) in [3]. This constant does not play an essential
role and can be replaced by any smaller positive number. Ideally, one would take an estimator that achieves
the infimum but it might happen that no minimizer exists. Using (3.5) allows to avoid this problem without
significantly deteriorating the deviation bounds we obtain for our estimator.

As explained earlier, we only focus on the theoretical aspects in this paper. Although ρ-estimators have been
developed to obtain theoretical rather than computational properties, it is possible to actually compute the
estimators in practice for some models and to run simulations, as in Baraud and Chen [5] (Sect. 5).

3.2. The performance of the estimator

The following result holds.

Theorem 3.1. Let δ ∈ (0, 1/K] and ξ > 0. Assume that Assumptions 1 and 2 hold and set V = V1 + · · ·+ VK .
Any ρ-estimator P̂δ on QK,δ satisfies with probability at least 1− e−ξ,

h2

(
P∗,

(
P̂δ

)⊗n)
≤ c0

[
h2 (P∗,QK) + n(K − 1)δ

]
(3.6)

+ c1116.1V

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ),

where c0 = 300, c1 = 5014. In particular, for the choice δ = V
n(K−1)

∧
1
K , the resulting estimator P̂ = P̂δ satisfies

Ch2
(
P∗, P̂⊗n

)
≤ h2(P∗,QK) + V

[
1 + log

(
Kn

V ∧ n

)]
+ ξ, (3.7)

with probability at least 1− e−ξ, where C is a positive universal constant.

The proof of the theorem is postponed to Section B.2. One can notice that the bound we obtain does not
depend on the space X , e.g. on the dimension d in the case X = Rd, but only on the VC-indices V1, . . . , VK and
on δ. Inequality (3.6) shows the influence of the choice of the parameter δ on the performance of the estimator
P̂δ. Hereafter, we shall choose δ as in the second part of Theorem 3.1 and therefore only comment on inequality
(3.7). Given P in QK , it follows from the triangle inequality and the fact that (a + b)2 ≤ 2a2 + 2b2 for all
non-negative numbers a and b, that

nh2
(
P , P̂

)
= h2

(
P
⊗n
, P̂⊗n

)
≤ 2h2

(
P∗, P̂⊗n

)
+ 2h2

(
P∗, P

⊗n)
.

We immediately derive from (3.7) that on a set of probability at least 1− e−ξ

Ch2
(
P , P̂

)
≤ 1

n

n∑
i=1

h2(P ∗i , P ) +
V log

(
Kn
/
V
)

+ ξ

n
. (3.8)
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In the ideal situation where the observations are i.i.d. with common distribution P ∈ QK , we obtain that

Ch2
(
P , P̂

)
≤
V log

(
Kn
/
V
)

+ ξ

n
.

Integrating this result with respect to ξ and the fact that P is arbitrary in QK leads to the uniform risk bound

sup
P∈QK

E
[
h2
(
P , P̂

)]
≤ C ′

V log
(
Kn
/
V
)

n
, (3.9)

where C ′ is a positive universal constant. This means that up to a logarithmic factor, the estimator P̂ uniformly
converges over QK at the rate 1/

√
n with respect to the Hellinger distance. One knows that when working with

the Hellinger distance, no estimator can do better that this 1/
√
n rate (see (1.1) in [6]).

We can see that we only need to bound the quantity V to deduce deviation inequalities in specific cases.
Therefore, we can already get a bound on the convergence rate for Gaussian mixtures with Lemma 2.2.

Corollary 3.2. � Let QK be the Gaussian location-scale mixture model, i.e. F 1 = · · · = FK ={
N (µ,Σ);µ ∈ Rd,Σ ∈ Cov+∗

}
. There is a positive universal constant C > 0 such that, for any ρ-estimator

P̂ = P̂δ on QK,δ, for all P ∈ QK and for all ξ > 0, we have

Ch2
(
P , P̂

)
≤
Kd2

[
1 + log

(
n
d2 ∨K

)]
+ ξ

n
,

with probability at least 1− e−ξ.
� Let QK be the Gaussian location mixture model associated to a fixed covariance matrix Σ ∈ Cov+∗(d), i.e.

F 1 = · · · = FK =
{
N (µ,Σ);µ ∈ Rd

}
. There is a positive universal constant C > 0 such that, for any

ρ-estimator P̂ = P̂δ on QK,δ, for all P ∈ QK and for all ξ > 0, we have

Ch2
(
P , P̂

)
≤
Kd

[
1 + log

(
n
d ∨K

)]
+ ξ

n
,

with probability at least 1− e−ξ.

Those rates would be optimal if the logarithmic factor was necessary. Doss et al. [10] proved it is not the
case for Gaussian location mixtures with known isotropic covariance matrix. They provide an estimator that
achieves the minimax rate

√
d/n with respect to the Hellinger distance. However, the dependency in K of their

bound in (1.12) is worse than exponential when it is just linear for our estimator.
Our assumption that the families of density functions Fk are VC-subgraph is actually weak since it includes

situations where these models consist of unbounded densities or densities which are not in L2 which to our knowl-
edge have never been considered in the literature. A concrete example of such situations is the following one. Let
g be some non-increasing function on (0,+∞) which is unbounded, nonnegative and satisfies

∫ +∞
0

g(x)dx = 1
2

and F k is the translation model associated to the family of densities
{
x 7→ g(|x− θ|)1|x−θ|>0; θ ∈ R

}
for all

k ∈ {1, . . . ,K}. It follows from Proposition 42-(vi) of Baraud et al. [4] that the VC-index of Fk is not larger
than 10.

When the data are independent but not i.i.d., we derive from inequality (3.8) that the estimator P̂ performs
almost as well as in the i.i.d. case as long as the marginals P ∗1 , . . . , P

∗
n are close enough to P . This means that

the estimator is robust with respect to a possible misspecification of the model and the departure from the
assumption that the data are i.i.d. In particular, this includes the situations where the dataset contains some
outliers or has been contaminated. Consider Hüber’s contamination model where a proportion ε of the data is
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contaminated, i.e. we have P ∗ = (1 − ε)P + εQ, where P is the probability distribution we want to estimate
and Q is the distribution of the contaminated data. In this situation, for any probability distribution Q, using
(3.8) and the convexity property of the Hellinger distance we get

Ch2
(
P , P̂

)
≤ ε+

V log (n) + ξ

n
. (3.10)

We can see that there is no perturbation of the convergence rate as long as the contamination rate ε remains
small as compared to V log(n)/n. Contrary to other loss functions, the Hellinger distance does not allow to
obtain a better rate than

√
ε in the general case (see Birgé [7]). Inequality (3.14), stated later, also allows to

consider misspecification for the emission models for example.

3.3. The case of totally bounded emission models

We might also consider emission models for which we do not have any bound on the VC-index. For a subset
N of P and η ∈ [0, 1], the η-covering number N(η,N , h) of N , with respect to the Hellinger distance, is
the minimum number of balls Bh(Pi, η), i = 1, . . . , N , necessary to cover N . In that case, the set N [η] =
{Pi; i = 1, . . . , N} constitutes a finite approximation of N , i.e. for all Q in N there exists i ∈ {1, . . . , N} such
that h (Q,Pi) ≤ η. We say that N is totally bounded (for the Hellinger distance) if its η-covering number is
finite for all η ∈ (0, 1]. A direct consequence of the definition of VC-subgraph classes is that any finite set F of
real-valued functions is VC-subgraph with VC-index at most V (F) ≤ log2 (|F|). Consequently, we can still use
ρ-estimation for models that are not proven to satisfy Assumption 2 but still are such that emission models are
totally bounded.

Theorem 3.3. Let F k be a totally bounded class of distributions for all k ∈ {1, . . . ,K} with K ≥ 2. Let QK

be the mixture model defined by

QK =

{
K∑
k=1

wkFk;w ∈ WK , Fk ∈ F k,∀k ∈ {1, . . . ,K}

}
.

Assume there are constants Ak ≥ 1 and αk such that log2N(η,Fk, h) ≤
(
Ak
η

)αk
for all k in [K] and for all

η ∈ (0, 1). Let ε be in (0, 1). For k in [K], let Fk[ε] be a minimal ε-net of F k such that |Fk[ε]| = N(ε,Fk, h).
Let QK,δ[ε] be the countable model defined by

QK,δ[ε] = {Pw,F ;w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ Fk[ε],∀k ∈ {1, . . . ,K}} .

Take δ = V
n(K−1) ∧

1
K with

V =

K∑
k=1

log2 (|Fk[ε]|) ≤
K∑
k=1

(
Ak
ε

)αk
,

where ε = n−
1

αmax+2 and αmax = max1≤k≤K αk. There exists a positive constant C such that for any ρ-estimator

P̂ = P̂δ on QK,δ[ε], for all ξ > 0, we have

Ch2

(
P∗,

(
P̂δ

)⊗n)
≤ h2 (P∗,QK) + n

αmax
αmax+2

K∑
k=1

Aαkk [1 + log (Kn)] + ξ,
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with probability at least 1− e−ξ. In particular, if the observations are i.i.d. with common distribution P ∗ ∈P
we have

Ch2
(
P ∗, P̂δ

)
≤ h2 (P ∗,QK) + n−

2
αmax+2

K∑
k=1

Aαkk [1 + log (Kn)] +
ξ

n
,

This theorem is proved in Section B.3 (p. 436) and we illustrate it with the following example. Doss
and Wellner [9] provide a bound on the entropy for classes of log-concave and s-concave densities. Let
C = {ϕ : R→ [−∞,∞);ϕ is a closed, proper concave function} where proper and closed are defined in [24]
(Sects. 4 and 7). For 0 < M <∞ and s > −1, let PM,s be the class of densities defined by

PM,s =

{
p ∈ Ps; sup

x∈R
p(x) ≤M, 1/M ≤ p(x) for all |x| ≤ 1

}
,

where Ps =
{
p :
∫
pdλ = 1

}⋂
hs ◦ C, λ is the Lebesgue measure on R and hs : R→ R is defined by

hs(y) =


ey, s = 0

(−y)
1/s
+ , s ∈ (−1, 0),

y
1/s
+ , s > 0.

We fix such values of M and s. Let QK be the density model of mixtures of s-concave densities (or log-concave
for s = 0) defined by

QK =

{
K∑
k=1

wkfk;w ∈ WK , fk ∈ PM,s

}
,

with K ≥ 2. Let QK be the class of distributions associated to QK . The class PM,s is not proven to be VC-
subgraph but it is totally bounded. As a direct consequence of Theorem 3.1 of Doss and Wellner [9], there exists
a positive constant A, depending only on M and s, such that for all ε in (0, 1], we have

log2N(ε,PM,s, h) ≤ Aε−1/2.

In particular, it means there exists a ε-net PM,s[ε] such that log2 (|PM,s[ε]|) ≤
(
A2/ε

)1/2
. Let QK,δ[ε] be the

countable density model given by

QK,δ[ε] =

{
K∑
k=1

wkfk;w ∈ WK , wk ≥ δ, wk ∈ Q, fk ∈ PM,s[ε]

}
.

One can check that QK,δ[ε] is also a ε-net of QK,δ with respect to the Hellinger distance using inequality (3.14)
hereafter page 412. The application of Theorem 3.3 on this example gives the following result.

Corollary 3.4. Assume there exists P ∗ in P such that P∗ = (P ∗)⊗n. Take ε = n−2/5 and δ = n−4/5 ∧K−1.
Let P̂ = P̂δ be a ρ-estimator on QK,δ[ε]. There exists a constant C(M, s) such that for all ξ > 0, we have

C(M, s)h2
(
P ∗, P̂

)
≤ h2 (P ∗,QK) +

K

n4/5
[1 + log (Kn)] +

ξ

n
,

with probability at least 1− e−ξ.
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This corollary provides a risk bound over the class of distributions associated to mixtures of s-concave
densities. Up to a logarithmic factor, the estimator P̂ uniformly converges over QK at the rate n−2/5 with
respect to the Hellinger distance, which is the same rate given in Theorem 3.2 of Doss and Wellner [9] for the
MLE over the model PM,s, i.e. for K = 1.

3.4. Application to the estimation of a general Gaussian mixture

We denote by φσ the density function of the normal distribution (with respect to the Lebesgue measure on
R) with mean 0 and variance σ2 > 0, i.e.

φσ : x 7→ 1√
2πσ2

e−
x2

2σ2 . (3.11)

We assume P ∗ is of the following form or is close enough to a distribution of the form

pH(x) =

∫
φσ(x− z)dH(z, σ),∀x ∈ R.

We say that pH is the Gaussian mixture density with mixing distribution H. We want to approximate any
distribution of this form with finite Gaussian mixtures, i.e. distribution with densities of the same form with
mixing distribution supported on a finite set. For a mixing measure H on R× R+∗, we denote by supp(H) its
support. To obtain an approximation result, we need to consider mixing measures H that are supported on a
compact set, i.e. there exist A ≥ 0 and R ≥ 1 such that supp(H) ⊂ [−A,A] × [1, R]. The Hellinger distance
being invariant to translation and rescaling, we consider the following class of densities. For A > 0 and R ≥ 1
we define

C(A,R) =

{
pH ;∃l ∈ R,∃s > 0, supp(H) ⊂ [l − sA, l + sA]× [s, sR]

}
and we denote by C (A,R) the associated class of distributions. We denote by Gmix,K the Gaussian mixture
model with K components associated to the class of densities Gmix,K defined by

Gmix,K :=

{
K∑
k=1

wkφσk(· − zk);w ∈ WK , σk ∈ (0,+∞), zk ∈ R,∀k ∈ {1, . . . ,K}

}
. (3.12)

This situation corresponds to Fk = G1 for all k ∈ {1, . . . ,K}. We can approximate the class C (A,R) with the
model Gmix,K as indicated by the following result.

Proposition 3.5. For K ≥ 2
(
24A2 + 1

)2
, we have

sup
PH∈C (A,R)

h2 (PH ,Gmix,K) ≤ 1

2
exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4
+R

]
.

This proposition allows to obtain a deviation bound on the estimation over C (A,R), with Theorem 3.1. Its
proof is postponed to Section C.2.

Theorem 3.6. For R ≥ 1 and n ≥ e, we take K = K(R,n) := d864R4 log2(n)e. Let P̂ be a ρ-estimator on GK,δ
with δ as in (3.7) and assume the true distribution is i.i.d., i.e. P∗ = (P ∗)⊗n. There exists a numeric constant



412 A. LECESTRE

C > 0, hence not depending on R, such that for all ξ > 0, with probability at least 1− e−ξ, we have

Ch2
(
P ∗, P̂

)
≤ h2 (P ∗,C (A,R)) +

R4 log3(n) + ξ

n
, (3.13)

for A = A(R,n) :=

√
12
√

3−1
24 R log1/2(n).

This result is proven in Section C.1. Therefore, for a fixedR, we obtain a rate of log3/2(n)/
√
n over C (∞, R) :=⋃

A>0 C (A,R) with respect to the Hellinger distance. We can also consider larger classes of distributions, with
R increasing as n increases but it would deteriorate this rate. Our result is still an improvement of Theorem 4.2
from [15] as it requires weaker assumptions. Their result is sensitive to translation or scaling and they have to
specify bounds 0 < σ < σ in the model such that H∗ is supported on a compact set [−a, a]× [σ, σ]. Moreover,
our estimator is robust, to contamination for instance. Assume we have an ε contamination rate of our data, i.e.
P ∗ is of the form P ∗ = (1− ε)P + εQ with ε ∈ (0, 1), P ∈ C (A(R,n), R) and Q is any probability distribution.

Then, our estimator satisfies Ch2(P ∗, P̂ ) ≤ ε + R4 log3(n)+ξ
n on an event of probability 1 − e−ξ. As long as ε

remains small as compared to R4 log3(n)/n, the rate is not deteriorated by the contamination.

3.5. Parameter estimation

We say that ŵ and F̂ are ρ-estimators if the resulting mixture distribution P̂ given by

P̂ =

K∑
k=1

ŵkF̂k

is a ρ-estimator. We have a general result for the performance of P̂ but not for ŵ and F̂ . Hopefully we those
parameter estimators would inherit the properties of P̂ under additional assumptions. Some results about the
robust estimation of parameters exist in the machine learning community, see Diakonikolas et al. [8] for instance.
As before, the available results are all restricted to specific cases such as Gaussian mixture models. Convexity
properties ensure that we always have the upper bound

h (Pw,F , Pv,G) ≤ inf
τ∈SK

{
h(w, v ◦ τ) + max

k∈[K]
h
(
Fk, Gτ(k)

)}
, (3.14)

for all mixing weights and emission distributions (see Lem. B.3), where SK denotes the set of all permutations of
[K] andWK is seen as the set of probability distributions on [K] and justify the notation h(w, v ◦ τ). Therefore,
a good estimation of the mixing weights w = (w1, . . . , wK) and of the emission distributions F = (F1, . . . , FK)
ensures a good estimation of the mixture distributions Pw,F . However the converse is not true as the parameters
are not even identifiable in general.

Example 3.7. Let F be the set of uniform distributions U(a, b) the uniform distribution on the interval (a, b)
of positive lengths. Then the parameters w and F in the mixture model

Q2 =
{
w1F1 + (1− w1)F2;w1 ∈ (0, 1), F1, F2 ∈ F

}
are not identifiable since

3

4
U(0, 1) +

1

4
U(1/3, 2/3) =

1

2
U(0, 2/3) +

1

2
U(1/3, 1).
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We shall say that P = Pw,F is identifiable (with respect to the model) if for all v in WK and all G in
F1 × · · · ×FK , we have

Pw,F = Pv,G ⇒ ∃τ ∈ SK ,∀k ∈ [K], wk = vτ(k) and Fk = Gτ(k),

There is a wide literature about identifiability that includes the works of Teicher [26] and Sapatinas [25] for
example. Allman et al. [1] provides identifiability conditions in a nonparametric framework but this is quite
unusual. In this section, we will consider a unique parametric model for the emission models, i.e. we have
F 1, . . . ,FK ⊂ {Fθ; θ ∈ Θ} with Θ ⊂ Rd and assume Pw∗,Fθ∗ is the true distribution or the best approximation
within the model. Identifiability is a minimum requirement for the parameter estimators to be meaningful but
we can hardly get more than consistency with it.

There is one approach that allows not to consider the identifiability issue is to consider the estimation of
the mixing distribution instead of the parameters themselves, i.e. w∗1δθ∗1 + · · · + w∗Kδθ∗K where δx is the Dirac
measure in x. Most results are given for the L1-Wassertein metric W1 which can be defined as follow for Θ ⊂ R.
For probability distributions G1, G2 on Θ, we have

W1(G1, G2) := sup
f∈Lip(1)

∫
Θ

f(dG1 − dG2), (3.15)

where Lip(1) is the class of Lipschitz functions with Lipschitz constant at most 1. Heinrich and Kahn [16]
establish minimax rates of estimation for mixing distribution under some regularity and strong identifiability
conditions. Wu and Yang [29] prove that their denoised method of moments for univariate Gaussian mixtures
provides an estimator of the mixing distribution that reaches the optimal rate with respect to W1. They also
prove an oracle bound for density estimation in the case of misspecification similar to (3.10), for the total
variation distance instead of the Hellinger distance. However, they only consider misspecified distributions that
are sub-Gaussian and in dimension one.

Our approach is to derive bounds on the convergence rates for the parameter estimators from (3.7). Typically,
we are looking for an inequality of the form

h(Pw∗,Fθ∗ , Pw,Fθ ) ≥ C(w∗, θ∗)

[
K∑
k=1

dΘ(θ∗k, θk) + dW(w∗, w)

]
,∀w ∈ WK ,∀θ ∈ Θ, (3.16)

where C(w∗, θ∗) is positive, dΘ is a distance on Θ and dW is a distance on WK . Intuitively, if we can estimate
each parameter individually we should be able to estimate the mixing distribution as well. Formally, for Θ ⊂ R,
we have

W1

(
K∑
k=1

w∗kδθ∗k ,

K∑
k=1

wkδθk

)
≤

K∑
k=1

|θ∗k − θk|+ max
i
|θ∗i | ·

K∑
k=1

|w∗k − wk|,∀w ∈ WK ,∀θ ∈ ΘK ,

which is a direct consequence of (3.15). One can see that when dΘ and dWK
in (3.16) are the L1 distance we

can deduce a bound for the estimation of the mixing distribution. The main difficulty remains to obtain a lower
bound on the Hellinger distance between mixtures. There are still some situations where we do have such a
lower bound.

Regular parametric model

Let K be an integer larger than 1. We consider parametric emission models associated to density models
Fk = {fk(·;α), α ∈ Ak}, where Ak is a subset of Rdk for all k ∈ {1, . . . ,K}. It is always possible to find a
countable dense subset of Ak with respect to the Euclidean distance on Rdk . We assume there is a reasonably
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good connection between the Hellinger distance on the emission models and the Euclidean distances on the
parameter spaces such that a dense subset of Ak would translate into a dense subset of the emission model
with respect to the Hellinger distance. This assumption is very weak and does not seem to be restrictive in any
way. In the different examples we consider we can always consider Ak ∩Qdk as a dense subset of Ak. Therefore
Assumption 1 is satisfied with Fk = {fk(·;α), α ∈ Bk}. We denote by QK the distribution model associated to
the mixture density model

QK =

{
p(·; θ) =

K−1∑
k=1

wkfk(·; zk) + (1− w1 − · · · − wK−1)fK(·;αK); θ = (w,α) ∈ Θ

}
,

where Θ is an open convex subset of

{
w ∈ (0, 1)K−1;

K−1∑
k=1

wk < 1

}
× A1 × · · · × AK . To be in the context of

regular parametric models consider by Ibragimov and Has’minskĭı [17] we need to make some assumptions.

Assumption 3. The classes of functions F1, . . . ,FK satisfy the following regularity conditions.

a) The function z 7→ fk(x; z) is continuous on Ak (with respect to the Euclidean distance) for µ-almost all
x ∈X , for all k ∈ {1, . . . ,K}.

b) For all k ∈ {1, . . . ,K}, for µ-almost all x ∈ X the function u 7→ fk(x;u) is differentiable at the point
u = α and for all j ∈ {1, . . . , dk}, we have∫

X

∣∣∣∣∂fk(x;α)

∂αj

∣∣∣∣2 µ(dx)

fk(x;α)
<∞.

c) The function θ 7→ ψ(·; θ) = ∂
∂θp

1/2(·; θ) is continuous in the space L2(µ).

d) The class of densities Fk is VC-subgraph with VC-index not larger than Vk for all k ∈ {1, . . . ,K}. We
write V = V1 = · · ·+ Vk.

The work of Ibragimov and Has’minskĭı [17] allows to derive a deviation inequality on the Euclidean distance
between parameters using Fisher’s information.

Theorem 3.8. Let θ be in Θ. Assume the Fisher’s information matrix

I
(
θ
)

=

∫
X

∂p
(
x; θ
)

∂θ

(
∂p
(
x; θ
)

∂θ

)T
µ(dx)

p
(
x; θ
)

is definite positive and inf ||θ−θ||≥a
θ∈Θ

h2
(
Pθ, Pθ

)
> 0 for all a > 0. Let P̂ = Pŵ,F̂ be a ρ-estimator on QK,δ, with

δ as in (3.7). There exists a positive constant C
(
θ
)

such that for all ξ > 0, with probability at least 1− e−ξ, we
have

C
(
θ
)(
||w − ŵ||2 +

K∑
k=1

1 ∧ ||αk − α̂k||2
)
≤ 1

n

[
h2
(
P∗, P⊗n

θ

)
+ V log(n) + ξ

]
. (3.17)

And assuming P ∗ = Pθ, we obtain the usual parametric convergence rate up to a logarithmic factor for the
parameter estimators.

This result is proven in Section D.1. Following the proof and Theorem 7.6 [17], the best constant C
(
θ
)

depends on the smallest eigenvalue of the Fisher’s information matrix I
(
θ
)

and the geometry induced by the

Hellinger distance around θ in Θ. Inequality (3.17) proves that even if “true parameters” might not exist the



ROBUST ESTIMATION IN FINITE MIXTURE MODELS 415

parameter estimators can be meaningful as long as P∗ is relatively close to the model. The Gaussian mixture
model is the most common mixture model and it is a regular parametric model. Let K ≥ 2 and for all k in [K]
take Fk = G1, where G1 is given in Lemma 2.2. We define a binary relation on R× (0,∞) by

(z1, σ1) > (z2, σ2)⇔

{
σ1 > σ2;

or σ1 = σ2 and z1 > z2.
(3.18)

We consider the parameters θ = (w1, . . . , wK−1, z1, σ
2
1 , . . . , zK , σ

2
K) belonging to the set

Θ =

{
θ ∈ (0, 1)K−1 × (R× R∗)K ;

K−1∑
k=1

wk < 1, (z1, σ1) > · · · > (zK , σK)

}
.

Theorem 3.9. Assume P ∗ = Pθ =
K∑
k=1

wkN (zk, σ
2
k) such that (z1, σ1) > · · · > (zK , σK) are all distinct and

inf
1≤k≤K

wk > 0. Let P̂ be a ρ-estimator on GK,δ, with δ as in (3.7). There exists a positive constant C
(
θ
)

such

that, for all ξ > 0, we have

C
(
θ
)(K−1∑

k=1

||wk − ŵk||2 +

K∑
k=1

∣∣∣∣(zk, σ2
k

)
−
(
ẑk, σ̂

2
k

)∣∣∣∣2 ∧ 1

)
≤ 5K log(n) + ξ

n
, (3.19)

with probability at least 1− e−ξ.

This result is proven in Section D.3. Our estimator reaches the optimal rate of convergence up to a logarithmic
factor. One can notice that the assumption of ordered couples of parameters (zj , σ

2
j ) can be replace by considering

distinct couples only and taking the infimum over permutation of the hidden states in (3.19).

Connection with the L2-distance

We can use results from the literature that do not apply to the Hellinger distance but to other ones such as
the L2-distance between densities. There is a general inequality between the L2 and Hellinger distances when
the density functions are bounded, i.e.

||p− q||22 ≤ 4 (||p||∞ + ||q||∞)h2(P,Q). (3.20)

Assume one can prove an inequality of the following type. For any w, v in WK and any fk, gk in Fk for all
k ∈ {1, . . . ,K} such that the resulting mixtures belong to our model, we have

c

(
d2
W(w, v) + max

k∈[K]
d2
F (fk, gk)

)
≤

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

wkfk −
K∑
k=1

vkgk

∣∣∣∣∣
∣∣∣∣∣
2

2

, (3.21)

where dW is a distance on WK and dF is a distance on
⋃

1≤k≤K Fk. Moreover, assuming the density models

Fk are uniformly bounded, i.e.

sup
k∈[K]

sup
f∈Fk

||f ||∞ =: U <∞, (3.22)
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we get

d2
W(w, v) + max

k∈[K]
d2
F (fk, gτ(k)) ≤

8U

c
h2

(
K∑
k=1

wkFk,

K∑
k=1

vkGk

)
.

Here again, a density estimation result implies a result for the parameter estimation. We can apply this method
to the special case of two-component mixture model with one known component. Let φ be a density function
on Rd with respect to the Lebesgue measure. We consider the 2-component mixture model Q associated to the
class of densities

Q =
{
x 7→ pw,z(x) = (1− w)φ(x) + wφ(x− z);w ∈ [0, 1], z ∈ Rd

}
, (3.23)

with F1 = {φ} and F2 =
{
x 7→ φ(x− z); z ∈ Rd

}
. Gadat et al. [13] proved an inequality such as (3.21) in this

situation. They still require the following assumptions on φ.

Assumption 4. The function φ belongs to C3
(
Rd
)
∩ L2

(
Rd
)
. For any M > 0, there exists a function g in

L2
(
Rd
)

such that

∀x ∈ Rd,∀z ∈ [−M,M ]d, |φ(x)− φ(x− z)| ≤ ||z||g(x)

and ∫
g2(x)φ−1(x)dx < +∞.

In this context, we have the desired inequality with respect to the L2-distance.

Proposition 3.10. (inequality (7.11) [13])
Under Assumption 4, for all M > 0, there exists a positive constant c(φ,M) such that for all z1, z2 ∈ [−M,M ]d

and w1, w2 ∈ (0, 1),

c(φ,M)||z1||2
(
||z2||2 (w1 − w2)

2
+ w2

1 ||z1 − z2||2
)
≤ ||pw1,z1 − pw2,z2 ||22.

One can notice that Assumption 4 implies that φ is bounded (see Assm. (HS) in [13]). Hence, we can deduce
a deviation inequality for ρ-estimators of parameters.

Theorem 3.11. We assume F2 has a finite VC-index V , w∗ ∈ (0, 1] and z∗ 6= 0. For δ as in (3.7), there exists
a positive constant C(φ,w∗, z∗) and an integer n0 = n0(φ,w∗, z∗) such that for any ρ-estimator P̂ = Pŵ,ẑ on
Qδ, n ≥ n0 and for all ξ ∈ (0, ξn), we have

C(φ, z∗, w∗)
(

(w∗ − ŵ)
2

+
(
||z∗ − ẑ||2 ∧ 1

))
≤ ξ + (V + 1) log(n)

n
,

with probability at least 1− e−ξ, where ξn = (1 + V )[1 + log(2n/(1 + V ))]).

This result is proven in Section E.1. It implies the consistency of ẑ and consequently the consistency of ŵ if
z∗ 6= 0, the parameter w∗ being ill defined if z∗ = 0. We can deduce a bound on the convergence rate for ẑ and
also for λ̂ but only for n large enough. It is similar to Theorem 3.1 of Gadat et al. [13] with a smaller power
for the logarithmic term. This slight improvement is allowed by the VC assumption. Furthermore, we do not
need to know a value of M such that z∗ ∈ [−M,M ] or to specify it in the model. The examples of translation
families taken by Gadat et al. [13] (Sect. 6) all satisfy the VC assumption.
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Lemma 3.12. We have the following VC-subgraph classes of density functions.

� The Cauchy location-scale family C of density functions, given hereafter by (4.3), is VC-subgraph with
VC-index V (C) ≤ 5.

� As a consequence of Lemma 2.2, the univariate normal location-scale family G1 is VC-subgraph with
VC-index at most 5.

� The Laplace location family L of density functions defined by

L =

{
x 7→ 1

2
e−|x−z|; z ∈ R

}
is VC-subgraph with VC-index V (L) ≤ 29.

� The location family of densities SGα associated to the skew Gaussian density defined by

SGα =

{
x 7→ 2φ1(x− z)

∫ x−z

−∞
φ1(αt)dt; z ∈ R

}
is VC-subgraph with VC-index V (SGα) ≤ 10 for all α ∈ R, where φ1 is given by (3.11).

This lemma is proven in Section F. By inclusion, if the bound holds for the location-scale family it also holds
for the location family with fixed scale parameter.

Proving a lower bound for a specific example

In some specific situations, it is relatively easy to prove a lower bound on the Hellinger distance. This is what
we do in the following example and it allows us to obtain faster rates than the usual parametric one. Let α be
in (0, 1). We denote by sα the probability density function with respect to the Lebesgue measure on R defined
by

sα : x ∈ R 7→ 1− α
2|x|α

1|x|∈(0,1].

We consider Q as in (3.23) with φ = sα and for w ∈ [0, 1] and z ∈ R, we write

pw,z = (1− w)sα + wsα(· − z).

We can prove that the Hellinger distance h(Pw,z, Pw′,z′) is lower bounded by some distance between the
parameters which leads to the following theorem.

Theorem 3.13. For w∗ > 0 and z∗ 6= 0, there is a positive constant C(α, z∗, w∗) such that, for any ρ-estimator
P̂ = Pŵ,ẑ on Qδ with δ = 10/n and n ≥ 20, for all ξ > 0, with probability at least 1− e−ξ we have

C(α, z∗, w∗)
[
1 ∧ |ẑ − z∗|1−α + (w∗ − ŵ)

2
]
≤ log(n) + ξ

n
.

This result is proven in Section E.2. It implies rather directly that our estimators ŵ and ẑ estimate w∗ and
z∗ at a rate which is at worst

√
(log n)/n and (n−1 log n)1/(1−α) respectively. This latter rate is faster than the

usual 1/
√
n-rate for all α ∈ (0, 1). Up to the logarithmic factors, these rates are optimal. For ẑ, it a consequence

of Theorem 1.1 in [17] (Chapter VI), noticing that sα has a singularity of order −α in 0, and with the fact that
we cannot do better than 1/

√
n for the Hellinger distance. One can notice that both maximum likelihood and

least squares approaches do not apply here since we consider density functions that are unbounded, and not
even square integrable for α ∈ [1/2, 1).
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4. Model selection

In Section 3 we consider estimation on a model with a fixed order K and simple emission families. We use
model selection to overcome this restriction in this section and consider composite emission families and/or
models with different orders.

4.1. Construction of the estimator

Let Θ be a subset of

⋃
K≥1

{K} ×
K∏
k=1

Λk.

Let δ : Θ→ (0, 1] be such that for θ = (K,λ1, . . . , λK) ∈ Θ, δ(θ) ∈ (0, 1/K]. We write

Qδ(θ) =

{
K∑
k=1

wkFk;w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ Fk,∀k ∈ [K]

}
.

We define Qδ by

Qδ =
⋃
θ∈Θ

Qδ(θ).

We associate to Qδ the family Qδ of densities with respect to µ and the ρ-estimator P̂δ of P based on the family
Qδ. Assuming we have a penalty function pen : Qδ → R, we set

Υ(X, q) = sup
q′∈Qδ

[T(X, q, q′)− pen(q′)] + pen(q), (4.1)

for all q ∈ Qδ. The ρ-estimator P̂δ is any measurable element of the closure (with respect to the Hellinger
distance) of the set EEE (ψ,X), as defined by (3.5). One can notice that a constant penalty function does not have
any impact on the definition of Υ and brings us back to the previous situation.

4.2. Estimation on a mixture model based on composite emission families

Let K be larger than or equal to 2. Let L be a subset of
∏K
k=1 Λk and define Θ by Θ = {K} × L, i.e. K is

fixed. For λ = (λ1, . . . , λK) ∈ L, the model Q(λ) is a subset of{
K∑
k=1

wkFk;w ∈ WK , Fk ∈ Fλk ,∀k ∈ [K]

}

and we define its countable subset Qδ(λ) by

Qδ =

{
K∑
k=1

wkFk ∈ Q(λ);w ∈ WK , wk ≥ δ(λ), wk ∈ Q, Fk ∈ Fλk ,∀k ∈ [K]

}
,

where δ is any function L→ (0, 1/K], and Qδ =
⋃
λ∈L Qδ(λ). Under Assumption 2, we write V (λ) = V (λ1) +

· · ·+ V (λK).
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Theorem 4.1. Let ∆ be a mapping L→ R+ such that
∑
λ∈L

e−∆(λ) ≤ 1. Let pen be the penalty function defined

by

pen(q) = κ inf
λ∈L|Q∈Q(λ)

[
116.1V (λ)

[
5.82 + log

(
(K + 1)2

δ(λ)

)
+ log+

(
n

V (λ)

)]
+ ∆(λ)

]
, (4.2)

where κ is given by (19) in [4]. Assume there is P ∗ in P such that P∗ = (P ∗)⊗n. For the choice δ(λ) =
V (λ)

n(K−1)

∧
1
K , there is a positive constant C such that the resulting estimator P̂ = P̂δ satisfies the following. For

all ξ > 0, with probability at least 1− e−ξ we have

Ch2(P ∗, P̂ ) ≤ inf
λ∈L

{
h2(P ∗,Q(λ)) +

1

n

(
V (λ)

[
1 + log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ) + ξ

)}
.

The constant C is universal, in particular it does not depend on K or on the choice of the model.

This proof of this theorem is postponed to Section B.4. It is a general result for the situation where you
know the number K of subpopulations, or at least want to fix it for the estimation, but are hesitating on the
models for the emission distributions. For instance, let us consider Gaussian and Cauchy location-scale families
for the composite emission families, an example simpler than Example 2.1. For all k ∈ {1, . . . ,K}, we take
Λk = {1, 2} with F 1 = G and F 2 = C , where C is the Cauchy location-scale family of distributions associated
to the density class

C =

{
x 7→ 1

πσ

1

1 +
(
x−z
σ

)2 ; z ∈ R, σ > 0

}
. (4.3)

We consider the model Q = ∪0≤j≤KQj with

Qj =


j∑

k=1

wkN (zk, σ
2
k) +

K∑
k=j+1

wkCauchy(zk, σk);
(z1, σ1) > · · · > (zj , σj),
(zj+1, σj+1) > · · · > (zK , σK)

 ,

where the order > on the parameters (zk, σk) is defined by (3.18) and allows to have identifiability properties
again here. Lemma 3.12 gives the same bound on the VC-indices of G1 and C therefore (4.2) provides a constant
penalty function, hence we will consider a null penalty function.

Theorem 4.2. Assume P ∗ =
j∗∑
k=1

wkN (zk, σ
2
k) +

K∑
k=j∗+1

wkCauchy(zk, σk) ∈ Qj∗ with (z1, σ1) > · · · >

(zj∗ , σj∗) and (zj∗+1, σj∗+1) > · · · > (zK , σK). Let P̂ be a ρ-estimator on Qδ with δ = 5
n

∧
1
K and a null

penalty. There exists an integer n0(P ∗) and a positive constant C(P ∗) such that for n ≥ n0(P ∗) there exists an
event of probability 1− (n(K + 1))−K on which such that P̂ ∈ Qj∗ and

C(P ∗)

||w − ŵ||2 +

j∗∑
k=1

∣∣∣∣(zk, σ2
k)− (ẑk, σ̂

2
k)
∣∣∣∣2 ∧ 1 +

K∑
k=j∗+1

||(zk, σk)− (ẑk, σ̂k)||2 ∧ 1


≤ K log(n(K + 1))

n
.

This result is proven in Section D.2. Following the proof, the constant C (P ∗) depends both on the distance
between P ∗ and the “wrong models” Qj , j 6= j∗ and on the smallest eigen value of the Fisher’s information



420 A. LECESTRE

matrix (within the regular parametric model Qj∗). Theorem 4.2 shows that it is possible to identify the true
emission models for n large enough and if this identification is established we can also estimate the different
parameters. This seems to be somehow original as we did not find any result of this kind in the literature.

4.3. Selection of the order K

We consider Θ of the form Θ =
⋃

K∈K

{K} × {λ}K , where K is a subset of {1, . . . , n}. For K ∈ K , we write

F = Fλ and F = Fλ its countable and dense subset given by Assumption 1. For K ∈ K , the model Q(K) is
a subset of {

K∑
k=1

wkFk;w ∈ WK , Fk ∈ F ,∀k ∈ [K]

}
.

We define Qδ(K) :=

{
K∑
k=1

wkFk ∈ Q(K);w ∈ WK , wk ≥ δ, wk ∈ Q, Fk ∈ F ,∀k ∈ [K]

}
and Qδ =

⋃
K∈K Qδ(K),

where δ : K → (0, 1] satisfies δ(K) ≤ 1/K. Under Assumption 2, we denote by V the VC-index of F , therefore
V (K) = K × V . If P̂ = P̂δ is a ρ-estimator on Qδ, we denote by K̂ the smallest integer K in K such that
P̂ ∈ Qδ(K).

Theorem 4.3. Let ∆ be a function K → R+ satisfying
∑

K∈K

e−∆(K) ≤ 1. We consider the penalty function

defined by

pen(q) = κ inf
K∈K |Q∈Q(K)

[
116.1KV

[
5.82 + log

(
(K + 1)2

δ(K)

)
+ log+

( n

KV

)]
+ ∆(K)

]
, (4.4)

where κ is given by (19) in [4]. Assume there exists P ∗ in P such that P∗ = (P ∗)⊗n. For the choice δ(1) = 1
and δ(K) = V

n

∧
1
K for K ≥ 2, there is a positive constant C such that any ρ-estimator P̂ = P̂δ on Qδ satisfies

the following. For all ξ > 0, with probability at least 1− e−ξ we have

Ch2(P ∗, P̂ ) ≤ inf
K∈K

{
h2(P ∗,Q(K)) +

KV log(n) + ξ + ∆(K)

n

}
. (4.5)

The constant C is universal, in particular it does not depend on F and therefore neither on V .

This result is proven in Section B.5. It gives an oracle inequality and it provides a way to determine the
number of clusters if one wants to use mixture models in order to do clustering. It is also interesting in the
context of density estimation. Once again, we take advantage of the approximation properties of GMMs to use
our estimator for density estimation on a wider class. We use the approximation result proven by Maugis and
Michel [20]. Let β > 0, r = bβc and k ∈ N such that β ∈ (2k, 2k + 2]. Let also P be the 8-tuple of parameters
(γ, l+, L, ε, C, α, ξ,M) where L is a polynomial function on R and the other parameters are positive constants.
We define the density class H(β,P) of all densities p satisfying the following conditions.

� For all x and y such that |y − x| ≤ γ,

(log p)(r)(x)− (log p)(r)(y) ≤ r!L(x)|y − x|β−r.

Furthermore for all j ∈ {0, . . . , r},

|(log p)(j)(0)| ≤ l+.
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� We have

max
1≤j≤r

∫
R

∣∣∣(log p)(j)(x)
∣∣∣ 2β+εj p(x)dx ∨

∫
R
|L(x)|2+ ε

β p(x)dx ≤ C.

� For all x ∈ R, p(x) ≤Mψ(x).
� The function f is strictly positive, non-decreasing on (−∞,−α) and non-increasing on (α,∞). For all
x ∈ [−α, α] we have p(x) ≥ ξ .

This class of functions can be approximated by Gaussian mixture models, the quality of the approximation
depending on the regularity parameter β.

Lemma 4.4. (Lemma 6.1 in [20])
For 0 < β < β, there exists a set of parameters P(β, β) and a positive constant cβ,β such that for all β ∈

[
β, β

]
,

all p ∈ H
(
β,P(β, β)

)
and all K ≥ 2, we have

h2 (P,Gmix,K) ≤ cβ,β
(logK)

3β

K2β
,

where Gmix,K is given by (3.12).

We consider K = {2, . . . , n}, ∆(K) = K and the penalty function pen as in (4.4).

Theorem 4.5. Let P̂ = P̂δ be a ρ-estimator on Qδ with δ as in (4.5). For 0 < β < β, there exist a positive

constant Cβ,β such that for any p in H
(
β,P(β, β)

)
with β ∈

[
β, β

]
, for all ξ > 0, we have

h2(P ∗, P̂ ) ≤ Cβ,β

(
(log n)

5β
2β+1

n
2β

2β+1

+
ξ

n

)
,

with probability at least 1− e−ξ.

This theorem is proven in Section C.3. It provides an upper bound on the convergence rate of our estimator
of order (log n)5β/(4β+2)n−β/(2β+1). It is the same rate obtained in Theorem 2.9 of Maugis and Michel [20] and
therefore our estimator as well is minimax adaptive to the regularity β, up to a power of log(n). Moreover, in
our setting there is no need to specify β nor β in our model i.e. there is no condition on the location and scale
parameters of each component. Intuitively, this would allow to obtain a better approximation bound but we did
not have time to look into that direction.

Appendix A. Main result

In this section we prove the main result of this paper, Proposition A.1, which gives an upper bound on the
ρ-dimension for finite mixture models. The ρ-dimension function is properly defined introduced in [3]. Bounding
the ρ-dimension is the key element as it allows to obtain the general result Theorem B.1 as a direct application
of Theorem 2 [3]. We recall definitions from [3] that we adapt to our context, in particular the function ψ defined
by (3.2) satisfies Assumption 2 of Baraud and Birgé [3] with a0 = 4, a1 = 3/8 and a2

2 = 3
√

2 (see Prop. 3 [3])
which gives the different constants. Let M be a countable subset of P. For y > 0 and P ∈P we write

BM
(
P , y

)
=
{
Q ∈M ; h2

(
P∗, P

⊗n)
+ h2

(
P∗, Q⊗n

)
< y2

}
.
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If Q is a set of probability density functions with respect to a σ-finite measure ν such that M ∪{P} = {q · ν; q ∈
M}, we write

w
(
ν,M,M , P , y

)
=

[
sup

Q∈BM (P,y)

|T (X, p, q)− EP∗ [T (X, p, q)]|

]
.

Similarly, we define wM
(
P , y

)
= inf(ν,M) w

(
ν,M,M , P , y

)
, where the infimum is taken over all couples (ν,M)

such that M is the class of density functions associated to M with respect to ν, σ-finite measure. We can now
define the ρ-dimension function of M by

DM
(
P∗, P

⊗n)
=

[
β2 sup

{
y2; wQ

(
P , y

)
>

3y2

64

}]∨
1,

with β =
√

3
25+1/4 . Following the notation established in Section 4, we need to bound the ρ-dimension function

over each Qδ(θ) in order to apply Theorem 2 [3].

Proposition A.1. Under Assumption 2, for θ = (K,λ1, . . . , λK) ∈ Θ, we write

V (θ) = V1,λ1
+ · · ·+ VK,λK ,

where Vk,λk is an upper bound on the VC-index of Fk,λk . For all P ∈PPP and P ∈ Qδ, we have the following
bound

DQδ(θ)
(
P, P

⊗n) ≤ Dn (δ, θ) := 545.3V (θ)

[
5.82 + log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)]
. (A.1)

A.1 Proof of Proposition A.1

The strategy of the proof is based on the following remark. One can notice that if for some pair (ν,Q) there

is y0 such that w
(
ν,Q,Q, P , y

)
≤ 3y2

64 for all y ≥ y0, then we have

DQ
(
P∗, P

⊗n) ≤ (βy0)
2
∨

1. (A.2)

Let θ′ be an element of Θ such that P belongs to Qδ(θ
′). Following notation of Section 4, we prove such an

inequality for the pair (µ,Qδ(θ) ∪ {p}) where p is the density function in Qδ(θ′) associated to P . To bound
w
(
ν,Q,Q, P , y

)
, we are going to bound the entropy of BQδ(θ)

(
P , y

)
which is possible since each emission

models is associated to VC-subgraph classes of density functions (see Assm. 2). For a metric space (A , d) and
ε > 0, we denote by N(ε,A , d) the minimal number of balls of radius ε needed to cover A . The next lemma
provides a bound on the covering number for our model, up to some modification.

Lemma A.2. For θ = (K,λ1, . . . , λK), we write V (θ) = V1,λ1 + · · ·+ VK,λK and we define

FQδ(θ)
(
P
)

:=

{
ψ

(√
q

p

)
; q ∈ Qδ(θ)

}
.

For any probability distribution R, we have

∀ε ≤ 2, logN
(
ε,FQδ(θ)

(
P
)
, || · ||L2(R)

)
≤ V (θ) log

(
e1+1/e8(K + 1)2

δ(θ)

)
+ 2V (θ) log(1/ε). (A.3)



ROBUST ESTIMATION IN FINITE MIXTURE MODELS 423

The next lemma is an intermediate result in the proof of Theorem 2 [5]. It allows to bound the expectation
of the supremum of an empirical process from a bound on the covering number on the considered space of
functions.

Lemma A.3. Let F be an at most countable set of measurable functions X → R such that for any probability
distribution P on (X ,X ), we have

log(N(ε,F , || · ||L2(P ))) ≤ a+ b log(1/ε).

Let X1, . . . , Xn be n independent random variables with values in (X ,X ). We define Z(F) by

Z(F) = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Xi)− E [f(Xi)])

∣∣∣∣∣
and assume supf∈F

1
n

n∑
i=1

E
[
f2(Xi)

]
≤ σ2 ≤ 1. Let q ∈ (0, 1). We have

E [Z(F)] ≤ 32A2 +A2
√

2nσ2,

with A = 1+q
1−q

(
1 + b

log 2+2a+b log(1/q)

)√
log 2 + 2a+ b log(1/q) + 2b log(1/σ).

Let y be a positive real number. We set

Fδ,θ,y
(
P
)

=

{
ψ

(√
q

p

)
;Q = q · µ ∈ Qδ(θ),h

2
(
P∗,P

)
+ h2

(
P∗, P̂

)
< y2

}
⊂ FQδ(θ)

(
P
)
.

Since ψ satisfies Assumption 2 [3] and given Lemma A.2, we can apply Lemma A.3 with σ2 = (3
√

2y2/n) ∧ 1,

a = V (θ) log

(
e1+1/e8(K + 1)2

δ(θ)

)
and b = 2V (θ).

We get

wQδ(θ)
(
µ,Qδ(θ) ∪ {p},Qδ(θ), P , y

)
≤ E [Z (Fδ,θ,y)] ≤ 32A2 +A2

√
2nσ2,

with A given in Lemma A.3. Let us try to find a simple upper bound for it. In our situation, dropping the
dependency on θ in the notation, we have

b

log 2 + 2a+ b log(1/q)
=

2V

log 2 + 2V log
(
e1+1/e8(K+1)2

δ

)
+ 2V log(1/q)

≤ 1

log
(
e1+1/e8(K+1)2

δq

)
≤ 1

log
(
e1+1/e8K(K+1)2

q

) ≤ 1

log
(
e1+1/e24×32

q

) ,
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hence

A ≤ 1 + q

1− q

1 +
1

log
(
e1+1/e24×32

q

)
√2V

[
log

(
e1+1/e213/4

q

)
+ log

(
(K + 1)2

δσ2

)]
.

For q = 1/9, we have

A ≤ 5

4

(
1 +

1

1 + 1
e + 4 log(6)

)√
2V

[
1

e
+ 1 + log

(
213/4 × 9

)
+ log

(
(K + 1)2

δσ2

)]

≤ 5

4
× 1.12

√
2V

[
5.82 + log

(
(K + 1)2

δσ2

)]

= 2.8

√
2V

[
5.82 + log

(
(K + 1)2

δσ2

)]
.

Finally,

wQδ(θ)
(
µ,Qδ(θ) ∪ {p}, P , y

)
≤ C0

√
nV σ2L (σ, δ, θ) + C1VL (σ, δ, θ) (A.4)

with L (σ, δ, θ) = 5.82 + log
(

(K+1)2

δσ2

)
, C0 = 2.8 × 4 = 11.2 and C1 = 26 × 2.82. Then we follow the proof of

Proposition 6 [5]. For D ≥ β2

3
√

2
V = 2−11V and y ≥ β−1

√
D, we have

L (σ, δ, θ) = 5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

3
√

2y2

)
≤ 5.82 + log

(
(K + 1)2

δ

)
+ log+

(
β2n

3
√

2D

)
= 5.82 + log

(
(K + 1)2

δ

)
+ log+

( n

211D

)
≤ 5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)
= L.

We combine it with (A.4) and since y ≥ β−1
√
D we get

wQδ(θ)(µ,Qδ(θ) ∪ {p}, P , y) ≤ 11.2×
√

3
√

2y
√
V L+ 26 × 2.82V L

=
3y2

64

[
64× 11.2× 21/4

√
V L√

3y
+

212 × 2.82V L

3y2

]

≤ 3y2

64

[
64× 11.2× 21/4

√
V L√

3β−1
√
D

+
212 × 2.82V L

3β−2D

]

=
3y2

64

[
2× 11.2

√
V L√
D

+ 2
√

2× 2.82V L

D

]
.
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For D = 545.3V L ≥ V L
[√

11.22 + 2
√

2× 2.82 + 11.2
]2

we have D ≥ 2−11V since L ≥ 5.82. Moreover, for all

y ≥ y0 = β−1
√
D, we have wQδ(θ)(µ,Qδ(θ)∪{p}, P , y) ≤ 3y2

64 which allows to conclude with (A.2). We now turn
to the proofs of the two lemmas.

Proof of Lemma A.3

The lemma is an intermediate result in the proof of Theorem 2 of Baraud and Chen [5]. We write Z(f) =

supf∈F

∣∣∣∣ n∑
i=1

εif(Xi)

∣∣∣∣ where ε1, . . . , εn are i.i.d. Rademacher random variables. We follow the proof with h(x) =

a+ b log(1/x) in (A.7) and everything stays the same up to equation (A.10). We get

E
[
Z(F)

]
≤
√

2n
1 + q

1− q

∫ B

0

√
log 2 + 2a+ b log(1/q) + 2b log(1/u)du,

with B =

√
σ2 +

8E[Z(F)]
n ∧ 1. With Lemma 2 [5], we have

E
[
Z(F)

]
≤ 16A2 +A

√
2nσ2,

with A = 1+q
1−q

(
1 + b

log 2+2a+b log(1/q)

)√
log 2 + 2a+ b log(1/q) + 2b log(1/σ). Classical symmetrization argu-

ments imply

E [Z(F)] ≤ 2E
[
Z(F)

]
≤ 32A2 +A

√
2nσ2.

Proof of Lemma A.2

We write φ = ψ
(√
·/p
)

. We drop the dependency on θ in this proof.

Lemma A.4. For any probability distribution R on (X ,X ), for w, v ∈ WK such that wk, vk ≥ δ for k =
1, . . . ,K and for any probability densities q1, . . . , qK , r1, . . . , rK , we have

||φ ◦ (w1q1 + · · ·+ wkqK)− φ ◦ (v1r1 + · · ·+ vKrK)||L2(R)

≤ 1√
δ

K∑
k=1

||φ ◦ qk − φ ◦ rk||L2(R) +
2

δ
||w − v||∞, (A.5)

where ||w − v||∞ = max
k∈[K]

|wk − vk|.

This lemma implies that for any probability distribution R on (X ,X ), we have

logN
(
ε,FQδ(θ)

(
P
)
, || · ||L2(R)

)
≤ logN (εK+1,WK , || · ||∞) (A.6)

+

K∑
k=1

logN
(
εk, φ ◦ Fk, || · ||L2(R)

)
,
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where φ◦Fk :=

{
φ ◦ f

∣∣∣∣F ∈ Fk

}
for k = 1, . . . ,K and ε = ε1+···+εK√

δ
+ 2εK+1

δ . Let us bound the covering numbers

involved in the latter inequality. From Proposition 42 in [4] and Lemma 1 in [5], we have the following bound .
For any probability measure R on (X ,X ) and for all εk ∈ (0, 2), we have

logN
(
εk, φ ◦ Fk, ||·||L2(R)

)
≤ log

(
eVk(8e)Vk−1

)
+ 2(Vk − 1) log(1/εk). (A.7)

We also need a bound on the covering number of WK . For εK+1 > 0, we have

logN (εK+1,WK , || · ||∞) ≤ K log

(
3

εK+1

)
. (A.8)

The proof comes at the end on page 428. We can now combine (A.6), (A.7) and (A.8). For ε ∈ (0, 2) and
δ ∈ (0, 1/K], we take

εK+1 = ε
δ

2

K

K +
K∑
k=1

2(Vk − 1)

and εj = ε
√
δ

2(Vj − 1)

K +
K∑
k=1

2(Vk − 1)

, j = 1, . . . ,K.

We get

logN
(
ε,FQδ(θ)

(
P
)
, || · ||L2(R)

)
≤ K log

(
3

εK+1

)
+ log

(
eK

(∏
k

Vk

)
(8e)

∑
k

(Vk−1)
)

+

K∑
k=1

2(Vk − 1) log(1/εk)

= K log

 6

εδ

K +
K∑
k=1

2(Vk − 1)

K


+ log

(
eK

(∏
k

Vk

)
(8e)V−K

)

+

K∑
k=1

2(Vk − 1) log

 1

ε
√
δ

K +
K∑
j=1

2(Vj − 1)

2(Vk − 1)



= log



[
K +

K∑
j=1

2(Vj − 1)

]K+
K∑
j=1

2(Vj−1)

KK ×
∏K
k=1[2(Vk − 1)]2(Vk−1)


+ V log

[∏
k

Vk

]1/V

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+ log

(
6KeV 8V−K

δV

)
+ (2V −K) log(1/ε).

The following inequalities allow to simplify this. For all x1, . . . , xn ≥ 0 such that x1 + · · ·+ xn > 0, we have

log

(
(x1 + · · ·+ xn)x1+···+xn

xx1
1 . . . xxnn

)
≤ (x1 + · · ·+ xn) log(n), (A.9)(

n∏
i=1

xi

) 1
x1+···+xn

≤
(
e

1
e

) 1
nn

≤ e1/e. (A.10)

Then, we get

logN
(
ε,FQδ(θ)

(
P
)
, || · ||L2(R)

)
≤

K +

K∑
j=1

2(Vj − 1)

 log(K + 1) + V log
(
e1/e

)

+ log

(
eV 8V

δV

)
+ (2V −K) log(1/ε)

≤ V log

(
e1+1/e8(K + 1)2

δ

)
+ 2V log(1/ε).

To conclude we need to prove (A.9), (A.10) and (A.8).

Proof of (A.9) and (A.10)

• In a first time, we assume x1 + · · ·+ xn = 1, i.e. x ∈ Wn. Then

log

(
(x1 + · · ·+ xn)x1+···+xn

xx1
1 . . . xxnn

)
= −

n∑
i=1

xi log(xi) and

(
n∏
i=1

xi

) 1
x1+···+xn

=

n∏
i=1

xi.

Both functions x 7→ −
n∑
i=1

xi log(xi) and x 7→
n∏
i=1

xi are bounded and attains a maximum on Wn for x1 = · · · =

xn = 1/n, such that

−
n∑
i=1

xi log (xi) ≤ log(n) and

n∏
i=1

xi ≤
(

1

n

)n
.

• In the generic case, we define s(x) := x1 + · · ·+ xn > 0 and y in Wn by yi = xi/s(x) for i = 1, . . . , n. We have

log

(
(x1 + · · ·+ xn)x1+···+xn

xx1
1 . . . xxnn

)
= s(x)×

[
−

n∑
i=1

yi log(yi)

]
≤ (x1 + · · ·+ xn) log(n)

and (
n∏
i=1

xi

) 1
x1+···+xn

= s(x)1/s(x) ×

(
n∏
i=1

yi

)1/s(x)
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≤ s(x)1/s(x) ×
(

1

nn

)1/s(x)

≤
(
e1/e

) 1
nn

.

The last inequality comes from ∀x > 0, x1/x ≤ e1/e and we get (A.10) with e ≥ 1 and nn ≥ 1.

Proof of (A.8)

Let ε ∈ (0, 1). Let N be an integer greater than 1
ε . We define

WK,N :=

{
w ∈ WK

∣∣∣∣∀k ∈ [K],∃dk ∈ N, wk =
dk
N

}
.

� One can easily see that there is a bijection between MK,N and the set

DK,N :=

{
d1, . . . , dK ∈ N

∣∣∣∣ K∑
k=1

dk = N

}
.

We have the following bound |DK,N | =
(
N+K−1

N

)
≤ (N + 1)K .

� Let w be in WK . For k ∈ [K], we write ak = bNwkc. We define s(a) ∈ N and d ∈ DK,N by s(a) :=
a1 + · · ·+ aK ≤ N and

∀k ∈ [K], dk := ak + 1s(a)+k≤N ∈ [bNwkc, bNwkc+ 1] .

Therefore, we have v ∈ WK,N defined by vk = dk
N , such that

∀k ∈ [K], |wk − vk| ≤ 1/N,

i.e. ||w − v||∞ ≤ 1/N ≤ ε.

Therefore WK,N is a ε-net of WK with respect to ||·||∞ and for N = d1/εe ≥ 1/ε we have

log(N(ε,WK , d)) ≤ log (|WK,N |) = log (|DK,N |)

≤ K log(1 +N) ≤ K log

(
3

ε

)
.

This concludes the proof of Lemma A.2.

Proof of Lemma A.4

The result is just the combination of the two following claims and the triangle inequality.

� First claim: For any probability distribution R, any nonnegative measurable functions q1, q2, g and any
w ∈ (0, 1) we have

||φ ◦ (wq1 + (1− w)g)− φ ◦ (wq2 + (1− w)g)||L2(R) ≤
1√
w
||φ ◦ q1 − φ ◦ q2||L2(R) . (A.11)
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� Second claim: Let g1, . . . , gK be K densities. For w, v ∈ WK,δ, we have

||φ ◦ (w1g1 + · · ·+ wKgK)− φ ◦ (v1g1 + · · ·+ vKgK)||L2(R) ≤
2

δ
||w − v||∞. (A.12)

Combining those inequalities, we have∣∣∣∣∣
∣∣∣∣∣φ ◦

(
K∑
k=1

wkfk

)
− φ ◦

(
K∑
k=1

vkgk

)∣∣∣∣∣
∣∣∣∣∣
L2(R)

≤

∣∣∣∣∣
∣∣∣∣∣φ ◦

(
K∑
k=1

wkfk

)
− φ ◦

(
K∑
k=1

vkfk

)∣∣∣∣∣
∣∣∣∣∣
L2(R)

+

K∑
k=1

||φ ◦ (hk−1)− φ ◦ (hk)||L2(R)

≤ 2

δ
||w − v||∞ +

K∑
k=1

1
√
νk
||φ ◦ (gk)− φ ◦ (fk)||L2(R)

≤ 2

δ
||w − v||∞ +

1√
δ

K∑
k=1

||φ ◦ (gk)− φ ◦ (fk)||L2(R) ,

with hk =
k∑
j=1

vjgj +
K∑

j=k+1

vjfj .

� Proof of (A.11).
For two probability densities f1 and f2, for x such that p(x) > 0 and f1(x) + f2(x) > 0, computation gives

|φ ◦ f1(x)− φ ◦ f2(x)| =
∣∣∣ψ (√f1/p (x)

)
− ψ

(√
f2/p (x)

)∣∣∣
=

∣∣∣∣∣∣
√

f1
p (x)− 1√
f1
p (x) + 1

−

√
f2
p (x)− 1√
f2
p (x) + 1

∣∣∣∣∣∣
=

2
∣∣∣√ f1

p (x)−
√

f2
p (x)

∣∣∣(√
f1
p (x) + 1

)(√
f2
p (x) + 1

)
=

2
∣∣∣ f1p (x)− f2

p (x)
∣∣∣(√

f1
p (x) + 1

)(√
f2
p (x) + 1

)(√
f1
p (x) +

√
f2
p (x)

) . (A.13)

For f1 = wq1 + (1− w)g and f2 = wq2 + (1− w)g, dropping x in the notation, we get

|φ ◦ (wq1 + (1− w)g)− φ ◦ (wq2 + (1− w)g)|

=
2w
∣∣∣ q1−q2p

∣∣∣(√
wq1+(1−w)g

p + 1

)(√
wq2+(1−w)g

p + 1

)(√
wq1+(1−w)g

p +
√

wq2+(1−w)g
p

)

=
2
∣∣∣ q1−q2p

∣∣∣(√
q1
p + 1

)(√
q2
p + 1

)(√
q1
p +

√
q2
p

)
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×
w
(√

q1
p + 1

)(√
q2
p + 1

)(√
q1
p +

√
q2
p

)
(√

wq1+(1−w)g
p + 1

)(√
wq2+(1−w)g

p + 1

)(√
wq1+(1−w)g

p +
√

wq2+(1−w)g
p

)

= |φ ◦ q1 − φ ◦ q2| ×

√
w
(√

q1
p + 1

)
(√

wq1+(1−w)g
p + 1

) × √
w
(√

q2
p + 1

)
√

wq2+(1−w)g
p + 1

×

√
q1
p +

√
q2
p√

wq1+(1−w)g
p +

√
wq2+(1−w)g

p

.

For w ∈ (0, 1) and any y1, y2, z ≥ 0 such that y1 + y2 + z > 0, we have

√
y1 +

√
y2√

wy1 + (1− w)z +
√
wy2 + (1− w)z

×
√
w
(√
y1 + 1

)√
wy1 + (1− w)z + 1

×
√
w
(√
y2 + 1

)√
wy2 + (1− w)z + 1

≤
√
y1 +

√
y2√

wy1 +
√
wy2

×
√
w
(√
y1 + 1

)
√
wy1 + 1

×
√
w
(√
y2 + 1

)
√
wy2 + 1

≤ 1√
w
.

Finally, for x such that p(x) > 0 and q1(x) + q2(x) + g(x) > 0, we have

|φ ◦ (wq1 + (1− w)g)(x)− φ ◦ (wq2 + (1− w)g)(x)| ≤ 1√
w
|φ ◦ q1(x)− φ ◦ q2(x)| . (A.14)

We now considered the atypical cases given the convention established in section 3.1. If q1(x) = q2(x) =
r(x) = 0, we have

|φ ◦ (wq1 + (1− w)g)(x)− φ ◦ (wq2 + (1− w)g)(x)| = 0

whether p(x) is positive or not. This equality is also true when p(x) = 0, q1(x)+g(x) > 0 and q2(x)+g(x) >
0. The last case is for p(x) = q1(x) = g(x) = 0 and q2(x) > 0 (q1 and q2 being interchangeable). We have

|φ ◦ (wq1 + (1− w)g)(x)− φ ◦ (wq2 + (1− w)g)(x)|

= 1 = |φ ◦ q1(x)− φ ◦ q2(x)| ≤ 1√
w
|φ ◦ q1(x)− φ ◦ q2(x)| .

Therefore, inequality (A.14) is always valid and taking the L2(R) norm provides the desired result.
� Proof of (A.12).

–We first prove an inequality for mixtures with fixed emission densities. Let r and q be any probability
densities on (X ,X ). Let w and v be in (0, 1). Using (A.13) and dropping x in the notation, for r 6= q we
have

|φ ◦ (wr + (1− w)q)− φ ◦ (vr + (1− v)q)|
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=
2 |w − v|

∣∣∣ r−qp ∣∣∣(√
wr+(1−w)q

p + 1

)(√
vr+(1−v)q

p + 1

)(√
wr+(1−w)q

p +
√

vr+(1−v)q
p

)

≤


2|w−v|| r−qp |(√

w|r−q|+(1−w)q
p +1

)(√
v|r−q|+(1−v)q

p +1

)(√
w|r−q|+(1−w)q

p +
√
v|r−q|+(1−v)q

p

) , if r > q

2|w−v|| r−qp |(√
(1−w)|q−r|+wr

p +1

)(√
(1−v)|q−r|+vr

p +1

)(√
(1−w)|q−r|+wr

p +
√

(1−v)|q−r|+vr
p

) , if r < q.

≤


2|√w−√v|

√
| r−qp |(√

w|r−q|
p +1

)(√
v|r−q|
p +1

) , if r > q

2|√1−w−
√

1−v|
√
| r−qp |(√

(1−w)|q−r|
p +1

)(√
(1−v)|q−r|

p +1

) , if r < q.

One can easily check that the function x 7→
√
x

(
√
αx+1)(

√
βx+1)

is bounded above by
(
α1/4 + β1/4

)−2
.

Therefore, we get

|φ ◦ (wr + (1− w)q)− φ ◦ (vr + (1− v)q)|

≤ 2

(
|
√
w −
√
v|(

w1/4 + v1/4
)2 ∨

∣∣√1− w −
√

1− v
∣∣(

(1− w)1/4 + (1− v)1/4
)2
)

= 2

(∣∣w1/4 − v1/4
∣∣

w1/4 + v1/4

∨ ∣∣(1− w)1/4 − (1− v)1/4
∣∣

(1− w)1/4 + (1− v)1/4

)
.

The inequality obviously stands for x such that r(x) = q(x). Therefore we can take the L2(R)-norm and
get

||φ ◦ (wr + (1− w)q)− φ ◦ (vr + (1− v)q)||

≤ 2

(∣∣w1/4 − v1/4
∣∣

w1/4 + v1/4

∨ ∣∣(1− w)1/4 − (1− v)1/4
∣∣

(1− w)1/4 + (1− v)1/4

)
. (A.15)

–We can now prove (A.12). Let g1, . . . , gK be K probability densities. Let w, v ∈ WK,δ. If w = v the proof
is obvious. Therefore we consider w 6= v. The idea is to rewrite w1g1 + · · ·+wKgK and v1g1 + · · ·+ vKgK
as 2 component mixtures with the same emission densities, allowing us to use (A.15). We define

t1 := max
1≤k≤K

wk − vk
1wk>vk − vk

∈ [0, 1] and t2 := max
1≤k≤K

vk − wk
1vk>wk − wk

∈ [0, 1].

Since w 6= v, we have t1, t2 > 0. We define two probability densities f1 and f2 by

f1 :=

K∑
k=1

[
vk +

wk − vk
t1

]
gk and f2 :=

K∑
k=1

[
wk +

vk − wk
t2

]
gk.
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One can check that we have

K∑
k=1

wkgk =
t1

t1 + t2(1− t1)
f1 +

t2(1− t1)

t1 + t2(1− t1)
f2,

K∑
k=1

νkgk =
t1(1− t2)

t2 + t1(1− t2)
f1 +

t2
t2 + t1(1− t2)

f2.

We get straight from (A.15) that

||φ ◦ (w1g1 + · · ·+ wkgK)− φ ◦ (v1g1 + · · ·+ vKgK)||L2(Q)

=

∣∣∣∣∣∣∣∣φ ◦ ( t1
t1 + t2(1− t1)

f1 +
t2(1− t1)

t1 + t2(1− t1)
f2

)
− φ ◦

(
t1(1− t2)

t2 + t1(1− t2)
f1 +

t2
t2 + t1(1− t2)

f2

)∣∣∣∣∣∣∣∣
L2(Q)

≤ 2


∣∣∣∣( t2(1−t1)
t1+t2(1−t1)

)1/4

−
(

t2
t2+t1(1−t2)

)1/4
∣∣∣∣(

t2(1−t1)
t1+t2(1−t1)

)1/4

+
(

t2
t2+t1(1−t2)

)1/4

∨ ∣∣∣∣( t1
t1+t2(1−t1)

)1/4

−
(

t1(1−t2)
t2+t1(1−t2)

)1/4
∣∣∣∣(

t1
t1+t2(1−t1)

)1/4

+
(

t1(1−t2)
t2+t1(1−t2)

)1/4


= 2


∣∣∣(t2(1− t1))

1/4 − (t2)
1/4
∣∣∣

(t2(1− t1))
1/4

+ (t2)
1/4

∨ ∣∣∣(t1)
1/4 − (t1(1− t2))

1/4
∣∣∣

(t1)
1/4

+ (t1(1− t2))
1/4


= 2

(∣∣(1− t1)1/4 − 1
∣∣

(1− t1)1/4 + 1

∨ ∣∣1− (1− t2)1/4
∣∣

1 + (1− t2)1/4

)

= 2

(
t1(

(1− t1)1/4 + 1
)2 (

(1− t1)1/2 + 1
) ∨ t2(

(1− t2)1/4 + 1
)2 (

(1− t2)1/2 + 1
))

≤ 2(t1 ∨ t2).

We end the proof of (A.12) with the following upper bound on t1 ∨ t2. We have

t1 ∨ t2 = max
1≤k≤K

(
wk − vk

1wk>vk − vk
∨ vk − wk
1vk>wk − wk

)
= max

1≤k≤K

{
|wk − vk| ×max

(
(1− vk)−1, (1− wk)−1, vk, wk

)}
≤ δ−1 ||w − v||∞ .

The proof of Lemma A.4 is now complete.

Appendix B. Theorems

In this section we provide a very general result from which we will derive Theorems 3.1, 3.3, 4.1 and 4.3.

Theorem B.1. Any ρ-estimator P̂ on Qδ satisfies, with probability at least 1− e−ξ,

h2
(
P∗, P̂⊗n

)
≤ inf
θ∈Θ

{
c0
(
h2(P∗,Q(θ)) + n(K − 1)δ(θ)

)
(B.1)
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+ c1

(
116.1V (θ)

[
5.82 + log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)]
+ ∆(θ)

)}
+ c1(1.49 + ξ).

with c0 = 300 and c1 = 5014. Moreover, for K ≥ 2 and δ(θ) = V (θ)
n(K−1) ∧

1
K , we have

log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
≤ (2 + log2 (9)) log

(
Kn

V (θ) ∧ n

)
(B.2)

and n(K − 1)δ(θ) ≤ n ∧ V (θ).

B.1 Proof of Theorem B.1

We recall that the function ψ defined by (3.2) satisfies Assumption 2 of Baraud and Birgé [3] with a0 =
4, a1 = 3/8 and a2

2 = 3
√

2 (see Prop. 3 [3]). Using Proposition A.1, we can apply Theorem 2 [3] with

Dn(δ, θ) = 545.3V (θ)

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V (θ)

)]
.

There exist constants γ and κ (given by (19) in [3]) such that, with probability ≥ 1− e−ξ, we have

h2
(
P∗, P̂

)
≤ inf
θ∈Θ

[
γh2(P∗,Qδ(θ)) +

4κ

a1

(
Dn(δ, θ)

4.7
+ ∆(θ)

)]
+

4κ

a1
(1.49 + ξ).

Lemma B.2. For all K ≥ 2 and θ ∈ Θ, we have

∀P ∈P, h (P,Qδ(θ)) ≤
√

(K − 1)δ(θ) + h (P,Q(θ)) . (B.3)

Using this inequality, we get

h2
(
P∗, P̂

)
≤ inf
θ∈Θ

[
2γ
(
h2(P∗,Q(θ)) + n(K(θ)− 1)δ(θ)

)
+

4κ

a1

(
116.1V (θ)

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V (θ)

)]
+ ∆(θ)

)]
+

4κ

a1
(1.49 + ξ).

From Baraud and Chen [5] (see proof of Thm. 1), we get that γ < 150 and 4κ/a1 < 5014. Let us now prove

(B.2). We consider θ such that K ≥ 2 and we take δ(θ) = V (θ)
n(K−1) ∧

1
K .

� If V (θ) ≤ n(K − 1)/K, then

log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
= log

(
(K2 − 1)(K + 1)n2

V (θ)2

)
= 3 log

(
Kn

V (θ)

)
+ log

(
(K2 − 1)(K + 1)V (θ)

K3n

)
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≤ 3 log

(
Kn

V (θ)

)
+ log

(
(K2 − 1)2

K4

)
≤ 3 log

(
Kn

V (θ) ∧ n

)
.

� Otherwise V (θ) > n(K − 1)/K and

log

(
(K + 1)2

δ(θ)

)
+ log+

(
n

V (θ)

)
≤ log

(
(K + 1)2K2

K − 1

)
= 3 log(K) + log

(
K2 + 2K + 1

K(K − 1)

)
≤ 3 log(K) + log (9/2)

≤
[
3 +

log(9)− log(2)

log(2)

]
log(K)

≤ (2 + log2(9)) log

(
Kn

V (θ) ∧ n

)
.

Finally, one can check that n(K − 1)δ(θ) ≤ n ∧ V (θ).

Proof of Lemma B.2

For K ≥ 2 and δ ∈ (0, 1/K], we define WK,δ by

WK,δ =WK ∩ [δ, 1]K . (B.4)

We prove by induction that

∀δ ∈ (0, 1/K], sup
w∈WK

h2 (w,WK,δ) ≤ 1−
√

1− (K − 1)δ. (B.5)

• Assume (B.5) holds true for K ≥ 2. Let δ be in (0, 1/(K + 1)) and w be in WK+1. Without loss of generality
we consider w1 ≤ w2 ≤ · · · ≤ wK ≤ wK+1. We define the function r by

r :

∣∣∣∣∣∣∣
WK+1 →WK

w 7→

{ (
w2

1−w1
, w3

1−w1
, . . . , wK

1−w1

)
for w1 6= 0,(

1
K ,

1
K , . . . ,

1
K

)
for w1 = 1,

and informally r−1 by

r−1 :

∣∣∣∣ WK × [0, 1) →WK+1

(w′, a) 7→ (a, (1− a)w′1, . . . , (1− a)w′K) .

� If w1 ≥ δ then w ∈MK+1,δ and h (w,WK+1,δ) = 0.
� Otherwise w1 < δ and we build a distribution v ∈ WK+1,δ to approximate w. Take η = δ/(1−δ) ∈ (0, 1/K].

From (B.5), there exists v′ ∈MK,η such that h2(r(w), v′) ≤ 1−
√

1− (K − 1)η. Now take v = r−1(δ, v′).
We have v1 = δ and for j ≥ 2, vj = (1− δ)v′j−1 ≥ (1− δ)η = δ. Therefore v belongs to WK+1,δ. We also
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have

h2(w, v) =
1

2

[(√
w1 −

√
δ
)2

+
(√

1− w1 −
√

1− δ
)2
]

+
√

1− w1

√
1− δh2(r(w), v′)

≤
[
1−
√

1− δ
]

+
√

1− δ
[
1−

√
1− (K − 1)η

]
= 1−

√
1− δ

√
1− (K − 1)δ/(1− δ)

= 1−
√

1−Kδ.

• We now prove (B.5) for K = 2. Let w be in W2 and without loss of generality assume that w1 ≤ 1/2 ≤ w2.
Once again we only need to consider w1 < δ. Then we take v = (δ, 1− δ) and we get

h2(w,W2,δ) ≤ h2(w, v)

=
1

2

[(√
w1 −

√
δ
)2

+
(√

1− w1 −
√

1− δ
)2
]

≤ 1−
√

1− δ.

This ends the proof of (B.5). We can now prove Lemma B.2. Let P ∈P and Pw,F ∈ Q(θ). There is v ∈ WK,δ

such that Pv,F ∈ Qδ(θ) and

h2 (w, v) ≤ 1−
√

1− (K − 1)δ ≤ (K − 1)δ.

By a density argument we can assume that v ∈ QK . Therefore,

h (P,Qδ(θ)) ≤ h (P, Pv,F )

≤ h (Pv,F , Pw,F ) + h (P, Pw,F )

≤
√

(K − 1)δ + h (P, Pw,F )

where the last inequality comes from Lemma B.3. Then, taking the infimum over Q(θ) ends the proof.

B.2 Proof of Theorem 3.1

It is a direct application of Theorem B.1 in the specific situation where

Θ = {θ = (K,λ1, λ2, . . . , λK)}.

Then, taking ∆(θ) = 0, inequality (B.1) becomes

h2

(
P∗,

(
P̂δ

)⊗n)
≤ c0

(
h2(P∗,QK) + n(K − 1)δ

)
+ c1116.1V

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ).
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With (B.2), we have

h2
(
P∗, P̂⊗n

)
≤ c0

(
h2(P∗,Q) + n ∧ V

)
+ c1116.1 (2 + log2(9))V

[
5.82 + log

(
Kn

V ∧ n

)]
+ c1(1.49 + ξ),

for K ≥ 2. One can easily check that it still holds for K = 1 (see [3]). Therefore (3.7) is proven.

B.3 Proof of Theorem 3.3

Let QK [ε] be the model defined by

QK [ε] =

{
K∑
k=1

wkFk;w ∈ WK , Fk ∈ Fk[ε],∀k ∈ [K]

}
.

Since the class F k is totally bounded, the set Fk[ε] is finite for all k ∈ [K]. We satisfy Assumptions 1 and 2
and therefore can apply Theorem 3.1 with

V =

K∑
k=1

log2(|Fk[ε]|) ≤
K∑
k=1

(
Ak
ε

)αk
.

Let P̂ = P̂δ be a ρ-estimator on QK,δ[ε]. For all ξ > 0, we have

h2

(
P∗,

(
P̂δ

)⊗n)
≤ c0

[
h2 (P∗,QK [ε]) + n(K − 1)δ

]
+ c1116.1V

[
5.82 + log

(
(K + 1)2

δ

)
+ log+

(
n

V

)]
+ c1(1.49 + ξ),

with probability at least 1− e−ξ.

Lemma B.3. Let w and v be in WK . Let Fk and Gk be in P for all k ∈ {1, . . . ,K}. We have

h

(
K∑
k=1

wkFk,

K∑
k=1

vkGk

)
≤ h(w, v) + max

k∈[K]
h (Fk, Gk) .

This lemma implies that QK [ε] is a ε-net of QK with respect to the Hellinger distance, and in particular

h2 (P∗,QK [ε]) ≤ 2h2 (P∗,QK) + 2nε2.

Therefore, if we use (3.7) with V =
K∑
k=1

(
Ak
ε

)αk
we get

Ch2

(
P∗,

(
P̂δ

)⊗n)
≤ 2h2 (P∗,QK) + 2nε2 + ε−αmax

K∑
k=1

Aαkk [1 + log(Kn)] + ξ.
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Finally, for ε = n−
1

αmax+2 , there exists a positive constant C such that for all ξ > 0, we have

Ch2

(
P∗,

(
P̂δ

)⊗n)
≤ h2 (P∗,QK) + n

αmax
αmax+2

K∑
k=1

Aαkk [1 + log (Kn)] + ξ,

with probability at least 1− e−ξ.

Proof of Lemma B.3

With Young’s inequality, we can easily prove the following inequality

∀x, y, z ∈ RK+ ,

√∑
k∈[K]

xkzk −
√∑
k∈[K]

xkyk

2

≤
∑
k∈[K]

xk(
√
zk −

√
yk)2.

Therefore, we get an upper bound on the Hellinger distance between mixture distributions. For w, v ∈ WK and
Fk, Gk ∈P for all k ∈ [K], we have

h

 ∑
k∈[K]

wkFk,
∑
k∈[K]

vkGk

 ≤ h
 ∑
k∈[K]

wkFk,
∑
k∈[K]

wkGk

+ h

 ∑
k∈[K]

wkGk,
∑
k∈[K]

vkGk


≤
√∑
k∈[K]

wkh2 (Fk, Gk) + h (w, v)

≤ max
k∈[K]

h(Fk, Gk) + h(w, v).

B.4 Proof of Theorem 4.1

Applying Theorem B.1 in the described setting, we get

h2
(
P ∗, P̂

)
≤ inf
λ∈L

[
c0
(
h2(P ∗,Q(λ)) + (K − 1)δ(λ)

)
+ c2

{
116.1V (λ)

n

[
5.82 + log

(
(K + 1)2

δ(λ)

)
+ log+

(
n

V (λ)

)]
+ ∆(λ)

}]
+ c2

1.49 + ξ

n
,

with probability at least 1− e−ξ. As K ≥ 2 and δ(λ) = V (λ)
n(K−1) ∧

1
K we have the following with (B.2). and finally

we have

h2
(
P∗, P̂⊗n

)
≤ inf
λ∈L

{
c0
(
h2(P∗,Q(λ)) + n ∧ V (λ)

)
+ c1

(
116.1V (λ)

[
5.82 + (2 + log2(9)) log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ)

)}
+ c1(1.49 + ξ)
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≤ C inf
λ∈L

{
h2 (P∗,Q(λ)) + V (λ)

[
1 + log

(
Kn

V (λ) ∧ n

)]
+ ∆(λ)

}
+ ξ,

where C is a positive numeric constant that does not depend on L.

B.5 Proof of Theorem 4.3

Applying Theorem B.1, we get

h2
(
P ∗, P̂

)
≤ inf
K∈K

[
c0
(
h2(P ∗,Q(K)) + (K − 1)δ(K)

)
+c2

{
116.1KV

n

[
5.82 + log

(
(K + 1)2

δ(K)

)
+ log+

( n

KV

)]
+ ∆(K)

}]
+ c2

1.49 + ξ

n
,

with probability at least 1− e−ξ. For K = 1 and δ(K) = 1 we have (K − 1)δ(K) = 0 ≤ KV ∧ n and

log

(
(K + 1)2

δ(K)

)
+ log+

( n

KV

)
= 2 log(2) + log

( n

KV ∧ n

)
.

Combining this inequality with (B.2), we have

5.82 + log

(
(K + 1)2

δ(K)

)
+ log+

( n

KV

)
≤ (5.82 + 2 log(2)) + (2 + log2(9)) log

(
Kn

KV ∧ n

)
for all K ≥ 1. Finally, there is a numeric constant C > 0 that is universal, such that for all ξ > 0 we have

Ch2
(
P ∗, P̂

)
≤ inf
K∈K

[
h2(P ∗,Q(K)) +

1

n

{
KV

[
1 + log

(
Kn

KV ∧ n

)]
+ ∆(K)

}]
+
ξ

n
,

with probability at least 1− e−ξ.

Appendix C. Density estimation

This section gathers the proofs of density estimation results, namely Theorems 3.6 and 4.5.

C.1 Proof of Theorem 3.6

The Gaussian location-scale family of density functions is VC-subgraph with VC-index V (C) ≤ 5 (see Lem.
3.12). Proposition 3.5 provides an approximation bound for C (A,R). The proof can be found on page 439. We
can now apply Theorem 3.1 with those two propositions. With (3.7), there exists a universal constant C such
that for P∗ = (P ∗)⊗n, ξ > 0, with probability at least 1− e−ξ, we have

Ch2
(
P ∗, P̂

)
≤ h2 (P ∗,C (A,R)) + exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4
+R

]

+
K log (n) + ξ

n
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≤ h2 (P ∗,C (A,R)) +
1

n

[
3
√

2

(eπ)1/271/4

(
864R4 log2(n) + 1

)1/4
+R

]

+

(
864R4 log2(n) + 1

)
log (n) + ξ

n

One can check that the assumptions ensure that log(n) ≥ 1 and therefore

Ch2
(
P ∗, P̂

)
≤ h2 (P ∗,C (A,R)) +

R log1/2(n)

n

[
3
√

28651/4

(eπ)1/271/4
+ 1

]
+

865R4 log3(n) + ξ

n
.

Finally, there exists a numeric constant C > 0 such that, for K =
⌈
864R4 log2(n)

⌉
≥ 2

(
24A2 + 1

)2
, for all ξ > 0,

with probability at least 1− e−ξ, we have

Ch2
(
P ∗, P̂

)
≤ h2(P ∗,C (A,R)) +

R4 log3(n) + ξ

n
.

The different conditions are satisfied for n ≥ exp
(
A2

R2
25

12
√

3

)
.

C.2 Proof of Proposition 3.5

We first need the following result.

Lemma C.1. Let k be a positive integer. For any probability distribution H on [−a, a]× [σ, σ], there is a discrete
probability distribution H ′ supported by k(2k − 1) + 1 points in [−a, a]× [σ, σ] such that

dTV (PH , PH′) ≤ inf
m>1

{√
2/π

σ
am

(
ea2(1 +m)2

2kσ2

)k
+

σ

2σ
exp

(
− (m− 1)2a2

2σ2

)}
.

The proof is postponed at the end of this one. Let A and R be two real numbers respectively greater than 0
and 1. As a direct consequence of this lemma, for any l ∈ R, any probability distribution H on [l±σA]× [σ,Rσ]
and for K ≥ k(2k − 1) + 1, we have

h2(PH ,GK) ≤ inf
m>0

{√
2/πA(1 +m)

(
eA2(2 +m)2

2k

)k
+
R

2
exp

(
−m

2A2

2R2

)}
.

The goal is to have an upper bound without an infimum. For that we are going to take a value of m given by
the parameters A and R. Now

h2(PH ,GK) ≤ inf
m≥2

{√
2/πA

3

2
m

(
eA24m2

2k

)k
+
R

2
exp

(
−m

2A2

2R2

)}

= inf
m≥2

{
3√
2π
Am

(
2eA2m2

k

)k
+
R

2
exp

(
−m

2A2

2R2

)}
.
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Let W denote the Lambert W function restricted to (0;∞) such that W (x) is the only positive number such

that W (x)eW (x) = x. For m =

√
2W (1/4eR2)R

A k1/2 and k ≥ 2A2

W (1/4eR2)R2 , to ensure that m ≥ 2, we get

h2(PH ,GK) ≤ 3√
2π

√
2W (1/4eR2)Rk1/2

(
4eR2W (1/4eR2)

)k
+
R

2
exp

(
−kW (1/4eR2)

)
= R exp

(
−kW (1/4eR2)

) [
k1/23

√
W (1/4eR2)/π + 1/2

]
.

Let us simplify this bound using simple properties of the function W .

� For all x > 0, 0 < W (x) < x.
� For all x ∈ (0, 1), x(1− x) < W (x). Therefore,

W (1/4eR2) ≥ 1

4eR2

(
1− 1

4eR2

)
≥ (1− 1/4e)

4eR2
=

4e− 1

16e2R2
≥ 1

12R2
.

Therefore, we have

h2(PH ,GK) ≤ R exp

(
− k

12R2

)[
k1/2 3

2R
√
eπ

+ 1/2

]
.

Since K ≥ 2
(
24A2 + 1

)2
, one can check that the set

B =

{
k ∈ N : K ≥ k(2k − 1) + 1 and k ≥ 2A2

R2W (1/4eR2)

}

is not empty, e.g. d24A2e ∈ B. We set k = maxB ≥ 1, i.e. k =
⌊

1
4 +

√
(K − 7/8)/2

⌋
≤
√
K 2√

7
, we have

K ∈ {n(2n− 1) + 1, . . . , (2n+ 1)(n+ 1)} ⇒ k = n ≥
√
K

n√
(2n+ 1)(n+ 1)

.

Since x 7→ x√
(2x+1)(x+1)

is non-decreasing on [1,+∞), we have k ≥
√
K/
√

6 for all K ≥ 2. Finally, we have

h2(PH ,GK) ≤ R exp

(
− k

12R2

)[
k1/2 3

2R
√
eπ

+ 1/2

]
≤ R exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2

2R
√
eπ71/4

+ 1/2

]

=
1

2
exp

(
− K1/2

12
√

6R2

)[
K1/4 3

√
2√

eπ71/4
+R

]
.

One can see that σ does not play a role here and is equivalent to s in the definition of C(A,R).

Proof of Lemma C.1

The bound is obtained following the proofs of lemmas in Ghosal and van der Vaart [15]
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� 1st step:
For |x| > a we have,

pH(x) =

∫
1√

2πσ2
exp

(
− (x− z)2

2σ2

)
dH(z, σ)

≤ 1√
2πσ2

exp

(
− (|x| − a)2

2σ2

)
. (C.1)

� 2nd step:
See Lemma A.1 in Ghosal and van der Vaart [15]. Take N = k(2k− 1) + 1. There is a discrete distribution
H ′ with at most K support points in [−a, a]× [σ, σ] such that∫

zlσ−(2j+1)dH(z, σ) =

∫
zlσ(2j+1)dH ′(z, σ) (C.2)

for l = 0, . . . , 2k − 2 and j = 0, . . . , k − 1. Because of (C.2) we get

∫ k−1∑
j=0

(−1)jσ−(2j+1)(x− z)2j

j!
dH(z, σ) =

∫ k−1∑
j=0

(−1)jσ−(2j+1)(x− z)2j

j!
dH ′(z, σ),

for x ∈ R. Taylor’s expansion of the exponential function ([15]),∣∣∣∣∣∣∣exp

(
− (x− z)2

2σ2

)
−
k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

∣∣∣∣∣∣∣ ≤
(
e(x− z)2

k2σ2

)k
.

Therefore,

√
2π sup
|x|≤M

|pH(x)− pH′(x)|

= sup
|x|≤M

∣∣∣∣∫ 1

σ
exp

(
− (x− z)2

2σ2

)
dH(z, σ)

−
∫

1

σ
exp

(
− (x− z)2

2σ2

)
dH ′(z, σ)

∣∣∣∣
= sup
|x|≤M

∣∣∣∣∣∣∣
∫

1

σ

exp

(
− (x− z)2

2σ2

)
−
k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

dH(z, σ)

−
∫

1

σ

exp

(
− (x− z)2

2σ2

)
−
k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

dH ′(z, σ)

∣∣∣∣∣∣∣
≤ 2 sup

|x|≤M
|z|≤a
σ≤σ≤σ

1

σ

∣∣∣∣∣∣∣exp

(
− (x− z)2

2σ2

)
−
k−1∑
j=0

(
− (x−z)2

2σ2

)j
j!

∣∣∣∣∣∣∣
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≤ 2 sup
|x|≤M
|z|≤a
σ≤σ≤σ

1

σ

(
e(x− z)2

k2σ2

)k

≤ 2

σ

(
e(M + a)2

k2σ2

)k
.

Obviously, the inequality (C.1) holds also for pH′ . We combine it with the last one we obtained in order to
bound the total variation distance. Therefore, for M = ma, m > 1, we have

dTV (PH , PH′) =
1

2

∫
|pH(x)− pH′(x)|dx

≤M sup
|x|≤M

|pH(x)− pH′(x)|+ 1

2

∫
|x|>M

pH(x) ∨ pH′(x)dx

≤
√

2/π

σ
M

(
e(M + a)2

2kσ2

)k
+

1

2

∫
|x|>M

1√
2πσ2

exp

(
− (|x| − a)2

2σ2

)
dx

≤
√

2/π

σ
M

(
e(M + a)2

2kσ2

)k
+
σ

σ

∫
x>M

1√
2πσ2

exp

(
− (x− a)2

2σ2

)
dx

≤
√

2/π

σ
am

(
ea2(1 +m)2

2kσ2

)k
+

σ

2σ
exp

(
− (m− 1)2a2

2σ2

)
.

Finally, writing A = a/σ and R = σ/σ, we have

dTV (PH , PH′) ≤ inf
m>1

{√
2/π

σ
am

(
ea2(1 +m)2

2kσ2

)k
+

σ

2σ
exp

(
− (m− 1)2a2

2σ2

)}
.

This concludes the proof of Proposition 3.5.

C.3 Proof of Theorem 4.5

We firs provide the proof of Lemma 4.4 which provides the necessary bound for the approximation.

Proof of Lemma 4.4

We will use notation from [20]. With Lemma 7.23 [19] and an inclusion argument, we have

h2 (P,GK) ≤ h2 (P,SK) ≤ 1

2
DKL (P ||SK) .

Combined with Lemma 6.1 [20], we get

h2 (P,GK) ≤
cβ,β

2
λ(K)2β

=
cβ,β

2

(
aβK

−1 (lnK)
3/2
)2β

≤ Cβ,β
(lnK)

3β

K2β
,
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with Cβ,β = cβ,βa
2β

β
/2.

The Gaussian location-scale family of density functions is VC-subgraph (see Lem. 3.12). For 0 < β < β and

β ∈ [β, β], let H
(
β,P(β, β)

)
be the class of density functions defined in Maugis and Michel [20]. One can check

that ∑
k∈K

e−∆(K) ≤ 1,

for ∆(K) = K. Applying Theorem 4.3, for ξ > 0, with probability at least 1− e−ξ, we have

Ch2(P ∗, P̂ ) ≤ inf
K∈K

{
h2(P ∗,GK) +

K(5 log(n) + 1) + ξ

n

}
≤ 2h2(P ∗,H

(
β,P(β, β)

)
) + inf

K∈K

{
2cβ,β

(logK)3β

K2β
+
K(5 log(n) + 1)

n

}
+
ξ

n
.

Therefore, following the proof of Theorem 2.9 of Maugis and Michel [20], we have

inf
K∈K

{
2cβ,β

(logK)3β

K2β
+
K(5 log(n) + 1)

n

}
. cβ,β inf

K∈K

{
(logK)3β

K2β
+
K log(n)

n

}
. cβ,β

(log n)
5β

2β+1

n
2β

2β+1

.

Finally, there exists Cβ,β such that for all ξ > 0, with probability at least 1− e−ξ, we have

h2(P ∗, P̂ ) ≤ Cβ,β

(
(log n)

5β
2β+1

n
2β

2β+1

+
ξ

n

)
.

Appendix D. Regular parametric models

This section gathers the proof of Theorems 3.8, 4.2 and 3.9.

D.1 Proof of Theorem 3.8

We apply the results of Ibragimov and Has’minskĭı [17] (Chap. 1, Sect. 7.1 and 7.3) to parametric mixture
models. We recall the notation

p(·; θ) =

K−1∑
k=1

wkfk(·;αk) + (1− w1 − · · · − wK−1)fK(·;αK)

and Θ =

{
w ∈ (0, 1)K−1,

K−1∑
k=1

wk < 1

}
×A1× · · · ×AK . Obviously, Θ is an open convex subset of RK−1×Rd1 ×

· · · × RdK . We first check that Assumption 3 implies that the model is regular.

� a) ⇒ θ 7→ p(x; θ) is continuous on Θ for µ-almost all x ∈X .
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� b) ⇒ For µ-almost all x ∈ X the function u 7→ p(x;u) is differentiable at the point u = θ. For all
k ∈ {1, . . . ,K} and j ∈ {1, . . . , dk}, we have

∫
X

∣∣∣∣∂p(x; θ)

∂αk,j

∣∣∣∣2 µ(dx)

p(x; θ)
=

∫
X

∣∣∣∣∂fk(x;αk)

∂αk,j

∣∣∣∣2 w2
k

p(x; θ)
µ(dx)

≤
∫

X

∣∣∣∣∂fk(x;αk)

∂αk,j

∣∣∣∣2 µ(dx)

fk(x;αk)
<∞.

It also works with k = K since w is fixed here. For k ∈ {1, . . . ,K − 1} we get

∫
X

∣∣∣∣∂p(x; θ)

∂wk

∣∣∣∣2 µ(dx)

p(x; θ)
=

∫
X

(fk(x;αk)− fK(x, αK))
2 µ(dx)

p(x; θ)

≤ 2

wk

∫
X

f2
k (x;αk)

µ(dx)

fk(x;αk)

+
2

1− w1 − · · · − wk

∫
X

f2
K(x;αk)

µ(dx)

fK(x;αK)

=
2

wk
+

2

1− w1 − · · · − wk
<∞.

Therefore, we have a regular statistical experiment (see [17]). Since the Fisher’s information matrix

I
(
θ
)

=

∫
X

∂p
(
x; θ
)

∂θ

(
∂p
(
x; θ
)

∂θ

)T
µ(dx)

p
(
x; θ
)

is definite positive. We can apply Theorem 7.6 of Ibragimov and Has’minskĭı [17] which says that we have

lim inf
t→0

||t||−2h2(Pθ, Pθ+t) ≥ λ(θ)/4.

where λ(θ) is the smallest eigen value of the Fisher’s information matrix I(θ). Therefore there exists a > 0 such
that

inf
θ∈Θ:||θ−θ||<a

∣∣∣∣θ − θ∣∣∣∣−2
h2
(
Pθ, Pθ

)
≥ λ

(
θ
)
/8.

Finally, there exists a positive constant C
(
θ
)

=
λ(θ)

8 ∧ inf
||θ−θ||≥a
θ∈Θ

h2
(
Pθ, Pθ

)
> 0 such that

∀θ ∈ Θ,
(

1 +
∣∣∣∣θ − θ∣∣∣∣−2

)
h2
(
Pθ, Pθ

)
≥ C

(
θ
)
.

We apply Theorem 3.1 so that with probability at least 1− e−ξ we have

1

n

[
h2
(
P∗, P⊗n

θ

)
+ V log(n) + ξ

]
≥ Ch2

(
Pθ, Pθ̂

)
≥

∣∣∣∣∣∣θ − θ̂∣∣∣∣∣∣2
1 +

∣∣∣∣∣∣θ − θ̂∣∣∣∣∣∣2C × C
(
θ
)
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≥

∣∣∣∣∣∣θ − θ̂∣∣∣∣∣∣2 ∧ b
1 + b

C × C(θ),

for any b ≥ 0. Since ||w − ŵ||2 ≤ K
K−1∑
k=1

(wk − ŵk)2 and

K−1∑
k=1

(wk − ŵk)
2

+

K∑
k=1

[
||αk − α̂K ||2 ∧ 1

]
≤
K−1∑
k=1

(wk − ŵk)
2

+

[
K∑
k=1

||αk − α̂K ||2
]
∧K

≤

[
K−1∑
k=1

(wk − ŵk)
2

+

K∑
k=1

||αk − α̂K ||2
]
∧ (K + 1)

=
∣∣∣∣∣∣θ − θ̂∣∣∣∣∣∣2 ∧ (K + 1),

we get, with b = K + 1,

1

n

[
h2
(
P∗, P⊗n

θ

)
+ V log(n) + ξ

]
≥

[
1

K
||w − ŵ||2 +

K∑
k=1

||αk − α̂k||2 ∧ 1

]
C × C(θ)

K + 2
,

with probability at least 1− e−ξ.

D.2 Proof of Theorem 4.2

Assumption 2 is satisfied with Lemma 3.12. For all j in {0, . . . ,K}, we have V j = 5K. We apply Theorem
4.1 with ∆j = log(K + 1) for all j ∈ {0, . . . ,K}. This induces a constant penalty function and one can check
that this does not modify the definition of ρ-estimators compared to a null penalty function. Therefore, the
estimator can be computed with a null penalty. There exists a positive constant that does not depend on P ∗

such that for n ≥ 5K, any ρ-estimator P̂δ on Qδ satisfies, with probability at least 1− e−ξ,

Ch2(P ∗, P̂ ) ≤ K log (n(K + 1)) + ξ

n
.

The following lemma allows to prove that for n large enough, the estimator P̂ belongs to the true model Qj∗

with high probability.

Lemma D.1. Let j ∈ {0, . . . ,K} and assume there is a sequence

(Pn)n =

 j∑
k=1

wk,nN (zk,n, σ
2
k,n) +

K∑
k=j+1

wk,nCauchy(zk,n, σk,n)


n

∈ QN
j

such that lim
n→∞

h(Pn, P
∗) = 0. Then, j = j∗ and there is a subsequence

(
Pψ(n)

)
n

such that

lim
n→∞

(zk,ψ(n), σk,ψ(n))1≤k≤K = (zk, σk)1≤k≤K .

This implies that α = infj 6=j∗ h (P ∗,Qj) > 0. For n ≥ n0 = inf{n ≥ 1 : C−1α−1K < n/ log(n(K + 1))} and
0 < ξ < Cnα

K log(n(K+1)) , there is an event Ωξ,n of probability 1− e−ξ such that

Ch2(P ∗, P̂ ) ≤ K log (n(K + 1)) + ξ

n
and P̂ ∈ Qj∗ .
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From now, we follow the proof of Theorem 3.6 to prove a lower bound on the Hellinger distance h(P ∗, P ) for
P ∈ Qj∗ .

Lemma D.2. There exists a positive constant a such that for all Pθ =
j∗∑
k=1

wkN (zk, σ
2
k) +

K∑
k=j∗+1

wkCauchy(zk, σk) ∈ Qj∗ ,

h2 (P ∗, Pθ) ≥ a
(
||w − w||2 +

j∗∑
k=1

∣∣∣∣(zk, σ2
k

)
−
(
zk, σ

2
k

)∣∣∣∣2
2
∧ 1

+

K∑
k=j∗+1

||(zk, σk)− (zk, σk)||22 ∧ 1

)
.

Finally, there is a constant C such that for ξ and n, on the event Ωξ,n, we have

C

||ŵ − w||2 +

j∗∑
k=1

∣∣∣∣(ẑk, σ̂2
k

)
−
(
zk, σ

2
k

)∣∣∣∣2
2
∧ 1 +

K∑
k=j∗+1

||(ẑk, σ̂k)− (zk, σk)||22 ∧ 1


≤ K log(n(K + 1)) + ξ

n
.

We still have to prove Lemmas D.1 and D.2.

Proof of Lemma D.1

Let j ∈ {0, . . . ,K} and assume there is a sequence

(Pn)n =

 j∑
k=1

wk,nN (zk,n, σ
2
k,n) +

K∑
k=j+1

wk,nCauchy(zk,n, σk,n)

 ∈ QN
j

such that lim
n→∞

h(Pn, P
∗) = 0. The mixing weights are bounded so we can assume we are already considering a

sequence such that wk,n −−−−→
n→∞

wk,∞ for all k ∈ {1, . . . ,K}. For the other parameters, it is always possible to

extract a subsequence Pψ(n) such that for all k

zk,ψ(n) −−−−→
n→∞

{
zk,∞ ∈ R,
or ±∞,

and σk,ψ(n) −−−−→
n→∞

{
σk,∞ ∈ R+,

or +∞.

We now consider the different cases possible (dropping the dependency on ψ in the notation).

� If zk,n −−−−→
n→∞

±∞ (without loss of generality we consider +∞ in the proof), for b ∈ R, we have

Pn([b,+∞[) ≥ wk,n
[
1k≤jN (zk,n, σ

2
k,n)([b,+∞[)

+ 1k>jCauchy(zk,n, σk,n)([b,+∞[)
]

≥ wk,n
2

for n large enough.
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Assume wk,∞ > 0. Since P ∗([b,+∞[) −−−→
b→∞

0, there exists b such that P ∗([b,+∞[) ≤ wj,∞/4. On the

other hand we have P ∗([b,+∞[) = lim
n→∞

Pθn([b,+∞[) ≥ wk,∞/2. Therefore, it means that wk,∞ = 0 and

it also holds for zk,n → −∞.
� If zk,n −−−−→

n→∞
zk,∞ ∈ R and σk,n −−−−→

n→∞
0, for b > 0 we have

Pn([zk,∞ − b, zk,∞ + b]) ≥ wk,n
(
1k≤jN (zk,n, σ

2
k,n)([b,+∞[)

+1k>jCauchy(zk,n, σk,n)([b,+∞[))→ wk,∞.

Assume wk,∞ > 0. Since P ∗([zk,∞ − b, zk,∞ + b]) −−−→
b→0

0, there exists b > 0 such that P ∗([zk,∞ − b, zk,∞ +

b]) ≤ wj,∞/2. On the other hand we have P ∗([zk,∞ − b, zk,∞ + b]) = lim
n→∞

Pn([zk,∞ − b, zk,∞ + b]) ≥ wk,∞.

Therefore, it means that wk,∞ = 0.
� If zk,n → zk,∞ ∈ R and σk,n →∞, for a > 0 we have

Pn([−a, a]) ≤ (1− wk,n)

+ wk,n
(
1k≤jN (zk,n, σ

2
k,n)([−a, a]) + 1k>jCauchy(zk,n, σk,n)([−a, a])

)
−−−−→
n→∞

(1− wk,∞).

Since P ∗([−a,+a]) −−−−−→
a→+∞

1, we get wk,∞ = 0

This proves that Pn converges to

P∞ =
∑

k≤j(λ)
wk,∞>0

wk,∞N (zk,∞, σ
2
k,∞) +

∑
k>j(λ)
wk,∞>0

wk,∞Cauchy(zk,∞, σk,∞),

and necessarily P ∗ = P∞. Lemma D.1 with the assumptions on P ∗ implies j = j∗ and there exist two permu-
tations τg, τc respectively on {1, . . . , j∗} and {j∗ + 1, . . . ,K} such that (πk, zk, σk) = (wτg(k), zτg(k), στg(k)) for
k in {1, . . . , j∗} and (πk, zk, σk) = (wτc(k), zτc(k), στc(k)) for k in {j∗ + 1, . . . ,K}.

Proof of Lemma D.2

� The map (z, σ2) 7→ g(x; z, σ2) = φσ(x− z) is continuous and differentiable on R× R+∗ with

∂zφσ(x− z) = φσ(x− z) (x− z)
σ2

∂σ2φσ(x− z) = φσ(x− z)
[

(x− z)2

2σ4
− 1

2σ2

]
.

Similarly (z, σ) 7→ f(x; z, σ) = 1
πσ

1
c(x;z,σ) is continuous and differentiable on R× R+∗ with

∂zf(x; z, σ) =
1

πσ3

x− z
c2(x; z, σ)

∂σf(x; z, σ) =
1

πσ2c(x; z, σ)

[
1− 2

c(x; z, σ)

]
.
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Moreover, on can check that we have∫
R

∣∣∂zg(x; z, σ2)
∣∣2 dx

g(x; z, σ2)
=

∫
R

(x− z)2

σ4
φσ(x− z)dx <∞∫

R

∣∣∂σ2g(x; z, σ2)
∣∣2 dx

g(x; z, σ2)
=

∫
R

[
(x− z)2

2σ4
− 1

2σ2

]2

φσ(x− z)dx <∞∫
R
|∂zf(x; z, σ)|2 dx

f(x; z, σ)
=

∫
R

(x− z)2

πσ5c3(x; z, σ)
dx <∞∫

R

∣∣∂σ2f(x; z, σ2)
∣∣2 dx

f(x; z, σ)
=

∫
R

1

πσ3c(x; z, σ)

[
1− 2

c(x; z, σ)

]2

dx <∞.

� The function θ 7→ ψ(·; θ) = ∂
∂θp

1/2(·; θ), where

p(x; θ) =

j∗∑
k=1

wkφσk(x− zk) +

K∑
k=j∗+1

1

πσc(x; z, σ)

and

θ = (w1, . . . , wK−1, z1, . . . , zK , σ
2
1 , . . . , σ

2
j∗ , σj∗+1, . . . , σK),

is continuous in the space L2(µ).
� We apply Theorem 1 of Meijer and Ypma [23]. For j∗ < K,

det(I(θ)) = 0

⇒ ∃λ 6= 0,

j∗∑
k=1

φσk(x− zk)

(
wkλzk(x− zk)

σ2
k

+ wkλσ2
k

[
(x− z)2

2σ4
k

− 1

2σ2
k

]
+ λwk

)

+

K−1∑
k=j∗+1

(
wkλzk(x− zk)

πσ3c2(x; zk, σk)
+
wkλσk
πσ2

k

[
1

c(x; zk, σk)
− 2

c2(x; zk, σk)

]
+

λwk
πσkc(x; zk, σk)

)

+ (1− w1 − · · · − wK−1)

(
λzK (x− zK)

πσ3
Kc

2(x; zK , σK)
+
λσK
πσ2

K

[
1

c(x; zK , σK)
− 2

c2(x; zK , σK)

])
− 1

πσKc(x; zK , σK)

K−1∑
k=1

λwk = 0 for µ-almost all x.

For j∗ = K,

det(I(θ)) = 0

⇒ ∃λ 6= 0,

K−1∑
k=1

φσ2
k
(x− zk)

(
wkλzk

(x− zk)

σ2
k

+ wkλσ2
k

[
(x− z)2

2σ4
k

− 1

2σ2
k

]
+ λwk

)
+ φσK (x− zK)

{
(1− w1 − · · · − wK−1)

(
λzK

(x− zK)

σ2
K

+ λσ2
K

[
(x− z)2

2σ4
K

− 1

2σ2
K

])
−

K−1∑
k=1

λwk

}
= 0 for µ-almost all x.
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Lemma D.3. Let (z1, σ1), . . . , (zK , σK) be distinct elements of R× R+∗. For any integer n, the families

A =
{
x 7→ xjφσi(x− zi); i ∈ {1, . . . ,K}, j ∈ {0, . . . , n}

}
and

B =

{
x 7→ xj

cl(x; zi, σi)
; i ∈ {1, . . . ,K}, l ∈ {1, 2}, j ∈ {0, 1}

}
are linearly independent. Moreover, the linear spaces SpanR(A) and SpanR(B) are orthogonal.

This proves that I(θ) is non singular.
� We now check inf ||θ−θ||≥a

Pθ∈Qj∗

h2(Pθ, Pθ) > 0,∀a > 0. It is a direct consequence of Lemma D.1.

� Q(λ∗) is a regular parametric model. We consider the parameter to be σ for the Cauchy distribution and

σ2 for the Gaussian distribution. Obviously, (z, σ) 7→ g(x; z, σ) = 1
πσ

1
c(x;z,σ) , with c(x; z, σ) = 1 +

(
x−z
σ

)2
is continuous and differentiable on R× R+∗ with

∂zg(x; z, σ) =
2(x− z)

πσ3c2(x; z, σ)

∂σg(x; z, σ) =
1

πσ2c(x; z, σ)
− 2

πσ2c2(x; z, σ)
.

Moreover, on can check that we have∫
R
|∂zg(x; z, σ)|2 dx

g(x; z, σ)
=

∫
R

4(x− z)2

πσ3c3(x; z, σ)
dx <∞

and ∫
R
|∂σg(x; z, σ)|2 dx

g(x; z, σ)
=

∫
R

1

πσ3c(x; z, σ)

[
1− 2

c(x; z, σ)

]2

dx <∞.

� With the results of [17], we get that there is a constant a∗ > 0 such that

∀Pθ ∈ Q(λ∗), a∗
||θ − θ||2

1 + ||θ − θ||2
≤ h2(P ∗, Pθ).

Proof of Lemma D.3

� Let f be any function in SpanR(A) ∩ SpanR(B). Therefore there are constants (λg,i,j)1≤i≤K,
0≤j≤n

and

(λc,i,l,j) 1≤i≤K,
0≤j≤1≤l≤2

such that

f(x) =

K∑
i=1

n∑
j=0

λg,i,jx
jφσi(x− zi) =

K∑
i=1

2∑
l=1

1∑
j=0

λc,i,l,j
xj

cl(x; zi, σi)
.
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Since f ∈ SpanR(A), we have f(x) = o±∞(x−k),∀k ∈ N. Therefore λc,i,l,j = 0 for all i, j, l and f = 0.
This proves SpanR(A) ∩ SpanR(B) = {0}.

� One can check that > is a strict total order such that

(z1, σ1) > (z2, σ2)⇒ xjφσ2
(x− z2)/φσ1

(x− z1) −−−−−→
x→+∞

0,

for any j ∈ N. Let λ be such that
∑
i,j

λi,jx
jφσi(x− zi) = 0 for all x. Without loss of generality, we assume

(z1, σ1) > · · · > (zK , σK). Therefore,

0 =
∑
i,j

λi,jx
jφσi(x− zi)

=
∑
i,j

λi,jx
jφσi(x− zi)/φσ1

(x− z1) +
∑
j

λ1,jx
j

=
∑
j

λ1,jx
j + o+∞(1).

It implies that λ1,j = 0 for all j. Then, we have
∑
i≥2,j

λi,jx
jφσi(x − zi) = 0. By induction, we get that

λ = 0 which proves that the family is indeed linearly independent.
� The partial fraction decomposition theorem implies that B is linearly independent.

This concludes the proof of Theorem 4.2.

D.3 Proof of Theorem 3.9

We apply Theorem 3.1 and Lemma D.2 (see page 446) with j∗ = K.

Appendix E. Two-component mixture models

This section gathers the proofs of the results for the two-component mixture model with one known
component, namely Theorems 3.11 and 3.13.

E.1 Proof of Theorem 3.11

We take M = ||z∗||∞+ 1 to have (E.1). With Proposition 3.10, there exists a positive constant C (depending
on φ and M) such that for all z ∈ [−M,M ]d, and all λ ∈ [0, 1], we have

C(φ,M)||z∗||2
(
||z||2 (λ∗ − λ)

2
+ (λ∗)

2 ||z∗ − z||2
)
≤ ||pλ∗,z∗ − pλ,z||2.

One can prove (using Prop. 2.1 in [13] and λ∗ 6= 0) that we have

inf
z 6∈[−M,M ]d,
λ∈[0,1]

||pλ∗,z∗ − pλ,z||2 > 0. (E.1)

Therefore, there is a constant C(φ, λ∗, z∗) such that for all z ∈ Rd and all λ ∈ [0, 1],

C(φ, λ∗, z∗)
((
||z||2 ∧ 1

)
(λ∗ − λ)

2
+ (λ∗)

2
(
||z∗ − z||2 ∧ 1

))
≤ ||pλ∗,z∗ − pλ,z||22.
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Since φ is bounded, with inequality (3.20), there is another constant C(φ, λ∗, z∗) such that for all z ∈ Rd and
λ ∈ [0, 1] we have

C(φ, λ∗, z∗)
((
||z||2 ∧ 1

)
(λ∗ − λ)

2
+ (λ∗)

2
(
||z∗ − z||2 ∧ 1

))
≤ h2 (Pλ∗,z∗ , Pλ,z) .

One can check the following

h2(Pλ∗,z∗ , Pλ̂,ẑ) ≤ C(φ, λ∗, z∗) (λ∗)
2 (||z∗||2 ∧ 1

)
/2⇒ ||z∗ − ẑ||2 ∧ 1 ≤ (||z∗||2 ∧ 1)/4

⇒ ||ẑ|| ∧ 1 ≥ ||z
∗||
2
∧ 1.

We use Theorem 3.1 for an upper bound on h2(Pλ∗,z∗ , Pλ̂,ẑ). For n ≥ n0(φ, λ∗, z∗), with

n0(φ, λ∗, z∗) := inf

{
n ≥ 1 + V

∣∣∣∣4(1 + V )[1 + log(2n/(1 + V ))]

nC(λ∗)2 (||z∗||2 ∧ 1)
≤ C(φ, λ∗, z∗)

}
,

for 0 < ξ ≤ ξn = (1 + V )[1 + log(2n/(1 + V ))], with probability at least 1− e−ξ we have

Ch2
(
Pλ∗,z∗ , Pλ̂,ẑ

)
≤ 1

n

{
(1 + V )

[
1 + log

(
2n

(V + 1)

)]
+ ξ

}
≤ C × C(φ, λ∗, z∗) (λ∗)

2 (||z∗||2 ∧ 1
)
/2,

where C is the constant given in Theorem 3.1. Therefore, there is a new constant C(φ, λ∗, z∗) such that for
n ≥ n0 and ξ ∈ (0, ξn), with probability at least 1− e−ξ we have

C(φ, λ∗, z∗)
(

(λ∗ − λ)
2

+
(
||z∗ − z||2 ∧ 1

))
≤ (1 + V ) [1 + log(2n/(1 + V ))] + ξ

n
.

E.2 Proof of Theorem 3.13

We need some preliminary results before applying Theorem 3.1.

Proposition E.1. For λ∗ ∈ (0, 1] and z∗ 6= 0, there is a positive constant C(α, λ∗, z∗) such that for all z ∈ R
and all λ ∈ [0, 1], we have

h2 (Pλ∗,z∗ , Pλ,z) ≥ C(α, z∗, λ∗)
[
(λ∗)

1/α (
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

]
.

Since sα is unimodal, the class of densities {x 7→ sα(x− z), z ∈ R} is VC-subgraph with VC-dimension not
larger than 10 (see Sect. 3.2). With Theorem 3.1 and Proposition E.1, there exists a positive constant C(α, λ∗, z∗)
such that for all ξ > 0, we have

C(α, z∗, λ∗)

[
1 ∧ |ẑ − z∗|1−α +

(
λ∗ − λ̂

)2
]
≤ log(n) + ξ

n
,

with probability at least 1− e−ξ.
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Proof of Proposition E.1

We write

fz(x) = sα(x− z) =
1− α

2|x− z|α
1|x−z|∈(0,1].

We define g by

g(x) =
2

1− α

(√
(1− λ∗)f0(x) + λ∗fz∗(x)−

√
(1− λ)f0(x) + λfz(x)

)2

such that

2h2 (Pλ∗,z∗ , Pλ,z) =
1− α

2

∫ +∞

−∞
g(x)dx.

Lemma E.2. Assuming z · z∗ > 0 and |z∗ − z| ≤ 1
(1−α)2/α

. There exists C(α, z∗, λ∗) > 0 such that

∫
g(x)dx ≥ C(α, z∗, λ∗)

[
(λ∗)

1/α (
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

]
.

Lemma E.3. For z · z∗ ≤ 0, we have∫
g(x)dx ≥ λ∗α2 1

∧[
(λ∗)(1−α)/α(1− α)2(1−α)/α|z∗|1−α

]
1− α

.

Lemma E.4. For |z − z∗| > 1
(1−α)2/α

and z∗ · z > 0, we have

∫
g(x)dx = λ∗(1 ∧ |z∗|).

Combining those three lemmas, there exists a positive constant C(α, z∗, λ∗) such that

h2 (Pλ∗,z∗ , Pλ,z) ≥ C ′(α, z∗, λ∗)
[
(λ∗)

1/α (
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

]
,

for all λ in [0, 1] and z in R. Without loss of generality, we assume z∗ > 0 through the proof of the lemmas.

Proof of Lemma E.2

Without loss of generality, we consider z∗ > 0 for now.
• For x ∈]− 1, 0[, we have

g(x) =
1

|x|α

(√
1− λ∗ + λ∗

|x|α
|x− z∗|α

1|x−z∗|∈(0,1] −

√
1− λ+ λ

|x|α
|x− z|α

1|x−z|∈(0,1]

)2

.

If z∗ ∧ z ≥ 1 then,

g(x) =
1

|x|α
(√

1− λ∗ −
√

1− λ
)2
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and ∫ 0

−1

g(x)dx ≥
(√

1− λ∗ −
√

1− λ
)2 1

1− α
.

Otherwise z∗ ∧ z ∈ (0, 1) then for x ∈]− 1, z∗ ∧ z − 1[,

∫ z∗∧z−1

−1

g(x)dx ≥
(√

1− λ∗ −
√

1− λ
)2 1− (1− z ∧ z∗)1−α

1− α
.

Finally,

∫ 0

−1

g(x)dx ≥
(√

1− λ∗ −
√

1− λ
)2 1− (1− z ∧ z∗)1−α

+

1− α
.

• For x ∈]z∗ ∨ z, z∗ ∨ z + 1[, we have

g(x) =
1

|x− z∗ ∨ z|α

(√
(1− λ∗) |x− z

∗ ∨ z|α
|x|α

1|x|∈(0,1] + λ∗
|x− z∗ ∨ z|α
|x− z∗|α

1|x−z∗|∈(0,1]

−

√
(1− λ)

|x− z∗ ∨ z|α
|x|α

1|x|∈(0,1] + λ
|x− z∗ ∨ z|α
|x− z|α

1|x−z|∈(0,1]

)2

.

� If z < z∗, with V < 1
|z−z∗| , for x ∈]z∗, z∗ + V |z − z∗|[, we have

• |x− z
∗|

|x|
≤ V |z

∗ − z|
z∗

≤ V,

• |x− z
∗|

|x− z|
≤ V |z∗ − z|

(1 + V )|z∗ − z|
≤ V.

We get

∫ z∗+V |z−z∗|

z∗
g(x)dx ≥

(√
λ∗ −

√
V α
)2
∫ z∗+V |z−z∗|

z∗

dx

|x− z∗ ∨ z|α

=
(√

λ∗ −
√
V α
)2 (V |z∗ − z|)1−α

1− α
.

We take V = (λ∗)1/α(1− α)2/α ≤ (λ∗)1/α

|z∗−z| ≤
1

|z∗−z| , and we have

∫ z∗+V |z−z∗|

z∗
g(x)dx ≥ λ∗α2 (λ∗)(1−α)/α(1− α)2(1−α)/α|z∗ − z|1−α

1− α

=
(λ∗)1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
.
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� If z ≥ z∗, we obtain the same way

∫ z+1

z

g(x)dx ≥ λ1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
.

Finally, for any z∗ in R, using the following inequalities

∀x, y ∈ [0, 1], 1− (1− |x|)1−α
+ ≥ (1− α)(1 ∧ |x|) and

(√
x−√y

)2 ≥ (x− y)
2
/4, (E.2)

we get

∫
g(x)dx ≥ 1|z|≥|z∗|

[
(λ)1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

]
1|z|<|z∗|

[
(λ∗)1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
+ (λ∗ − λ)

2
(1 ∧ |z|)

]
.

� If |z| ≥ |z∗|:
◦ if λ > cλ∗, then

∫
g(x)dx ≥ (λ∗)1/αc1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

≥ C1(α, c)
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)

2
]

with C1(α, c) = 1
∧ c1/αα2(1−α)2(1−α)/α

1−α ;

◦ otherwise
∫
g(x)dx ≥ (λ∗)2(1− c)2(1 ∧ |z∗|),

(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)
2 ≤ (λ∗)1/α 1

(1− α)2(1−α)/α
+ (1 ∧ |z∗|)

and finally

∫
g(x)dx ≥ (λ∗)2(1− c)2(1 ∧ |z∗|)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

×
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)

2
]
.

� If |z| < |z∗|:
◦ if |z| ≥ d|z∗|, then

∫
g(x)dx ≥ (λ∗)1/αα2(1− α)2(1−α)/α|z∗ − z|1−α

1− α
+ (λ∗ − λ)

2
d(1 ∧ |z∗|)

≥ C2(α, d)
[
(λ∗)

1/α |z − z∗|1−α + (λ∗ − λ)
2

(1 ∧ |z∗|)
]
,

with C2(α, d) = d ∧ α2(1−α)2(1−α)/α

1−α ;
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◦ otherwise
∫
g(x)dx ≥ (λ∗)1/αα2(1−α)2(1−α)/α|z∗|1−α(1−d)1−α

1−α and

(λ∗)
1/α |z − z∗|1−α + (λ∗ − λ)

2
(1 ∧ |z∗|) ≤ (λ∗)

1/α 1

(1− α)2(1−α)/α
+ (1 ∧ |z∗|)

and finally ∫
g(x)dx ≥ (λ∗)1/αα2(1− α)2(1−α)/α|z∗|1−α(1− d)1−α/(1− α)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

×
[
(λ∗)1/α|z∗ − z|1−α + (1 ∧ |z∗|) (λ∗ − λ)

2
]
.

Finally, ∫
g(x)dx ≥ C(α, z∗, λ∗)

[
(λ∗)

1/α (
1 ∧ |z − z∗|1−α

)
+ (λ∗ − λ)

2
(1 ∧ |z∗|)

]
,

with

C(α, z∗, λ∗) = min

(
1,
c1/αα2(1− α)2(1−α)/α

1− α
(λ∗)2(1− c)2(1 ∧ |z∗|)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

,

d,
α2(1− α)2(1−α)/α

1− α
,

(λ∗)1/αα2(1− α)2(1−α)/α|z∗|1−α(1− d)1−α/(1− α)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

)

= min

(
1,
c1/αα2(1− α)2(1−α)/α

1− α
, d,

(λ∗)2(1− c)2(1 ∧ |z∗|)
(λ∗)1/α 1

(1−α)2(1−α)/α + (1 ∧ |z∗|)
,

(λ∗)1/αα2(1− α)2(1−α)/α|z∗|1−α(1− d)1−α/(1− α)

(λ∗)1/α 1
(1−α)2(1−α)/α + (1 ∧ |z∗|)

)
.

Proof of Lemma E.3

Without loss of generality, we take z∗ > 0.
• For x ∈]z∗, z∗(1 + a)[, a < (z∗)−1 we have

g(x) =
1

|x− z∗|α

(√
(1− λ∗) |x− z

∗|α
|x|α

1|x|∈(0,1] + λ∗

−

√
(1− λ)

|x− z∗|α
|x|α

1|x|∈(0,1] + λ
|x− z∗|α
|x− z|α

1|x−z|∈(0,1]

)2

.
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and

|x− z∗|
|x− z|

≤ |x− z
∗|

|x|
≤ a

1 + a
≤ a.

We get

∫ z∗+a

z∗
g(x)dx ≥

(√
λ∗ −

√
aα
)2
∫ z∗+a

z∗

dx

|x− z∗|α

=
(√

λ∗ −
√
aα
)2 (az∗)

1−α

1− α
.

We take a = (λ∗)1/α(1− α)2/α ≤ 1
z∗ , and we have

∫ z∗+a

z∗
g(x)dx ≥ λ∗α2 (λ∗)(1−α)/α(1− α)2(1−α)/α(z∗)1−α

1− α
.

Otherwise a = 1/z∗ ≤ (λ∗)1/α(1− α)2/α and

∫ z∗+a

z∗
g(x)dx ≥ λ∗α2 1

1− α
.

Finally,

∫ z∗+1

z∗
g(x)dx ≥ λ∗α2 1

∧[
(λ∗)(1−α)/α(1− α)2(1−α)/α(z∗)1−α]

1− α
.

Proof of Lemma E.4

Without loss of generality, we take z∗ ≥ 0.

� If z ≥ z∗ + 1
(1−α)2/α

. For x ∈]z∗ ∨ 1, (z∗ + 1) ∧ (z − 1)[, we have

g(x) =
λ∗

|x− z∗|α
.

One can prove that

|z − z∗| − 1 ≥ 1

(1− α)2/α
− 1 ≥ 1.

◦ If z∗ ≥ 1, then We get

∫ z∗+1

z∗
g(x)dx ≥ λ∗

1− α

[
1
∧
|z − z∗| − 1

]1−α
≥ λ∗

1− α
.
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◦ If z∗ ≤ 1, then

∫ (z∗+1)∧(z−1)

1

g(x)dx ≥ λ∗

1− α

[
1
∧

(|z − z∗| − 1)1−α − (1− z∗)1−α
]

≥ λ∗

1− α

[
1− (1− z∗)1−α

]
.

� If z∗ ≥ z + 1
(1−α)2/α

, we get

∫ z∗+1

z∗
g(x)dx =

λ∗

1− α
.

Finally,

∫ z∗+1

z∗
g(x)dx =

λ∗

1− α
[
1− (1− z∗)1−α

+

]
≥ λ∗(1 ∧ z∗).

Appendix F. VC-subgraph classes of functions

For more detailed introductions to VC-subgraph classes we refer the reader to Van der Vaart and Wellner
[28] (Sect. 2.6.5) and Baraud et al. [4] (Sect. 8).

Definition F.1. Definition 41 [4]
Let C be a non-empty class of subsets of a set Ξ. If A ⊂ Ξ with |A| = n, then

∆n(C , A) = |{A ∩B,B ∈ C }| and ∆n(C ) = max
A⊂Ξ,|A|=n

∆n(C , A).

If V = sup{n ∈ N |∆n(C ) = 2n} < +∞, then C is a VC-class with VC-dimension V and VC-index V = inf{n ∈
N |∆n(C ) < 2n} = V + 1. A class F of functions from a set X with values in (−∞,+∞] is VC-subgraph
with dimension V and index V if the class of subgraphs {(x, u) ∈X × R, f(x) > u} as f varies among F is a
VC-class of sets in X × R with dimension V and index V .

It immediately follows from this definition the following:

� if F is VC-subgraph with dimension V , then any subset G ⊂ F is VC-subgraph with dimension at most
V ,

� if F is a finite set, F is VC-subgraph and its dimension is not larger than V = log2(|F |) ∨ 1.

The main reason for using VC-subgraph theory is the uniform entropy property. Namely, if F is a VC-subgraph
set of measurable functions on (X ,X ) with VC-dimension V and ||f ||∞ ≤ 1 for all f ∈ F , it follows from
Lemma 1 in Baraud and Chen [5] that, for any probability P on (X ,X ) we have

N (ε,F , Lr(P )) ≤ e(V + 1)(2e)V
(

2

ε

)rV
.
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F.1 Proof of Lemma 2.2

Let Cov+∗(d) be the set of d× d symmetric and positive-definite matrices. The normal distributions on Rd
with mean µ ∈ Rd and covariance matrix Σ ∈ Cov+∗(d) admits gµ,Σ, defined by

gµ,Σ : x 7→
exp

(
− 1

2 (x− µ)
T

Σ−1 (x− µ)
)

√
(2π)k |Σ|

,

as a density with respect to the Lebesgue measure on Rd, where |Σ| denotes the determinant of |Σ|. We have

log(gµ,Σ(x)) = −1

2
log
(
(2π)k |Σ|

)
− 1

2
(x− µ)

T
Σ−1 (x− µ)

= −1

2
log
(
(2π)k |Σ|

)
− 1

2
µTΣ−1µ− µTΣ−1x− 1

2
xTΣx.

For the location-scale family Gd :=
{
gµ;Σ;µ ∈ Rd,Σ ∈ Cov+∗

}
, we have

Gd ⊂ exp ◦

x 7→ a+
∑
i≤j

bi,jxixj +

d∑
i=1

cixi; a ∈ R, (bij)i≤j ∈ Rd(d+1)/2, c ∈ Rd
 .

Since

{
x 7→ a+

∑
i≤j

bi,jxixj +
d∑
i=1

cixi; a ∈ R, (bij) ∈ Rd(d+1)/2, c ∈ Rd
}

is a vector space of dimension 1 + d(d+

3)/2 and exp is monotone, we get that V (Gd) ≤ 3+ d(d+3)
2 . For Σ ∈ Cov+∗(d) fixed, the location family Gloc(Σ) :={

gµ;Σ;µ ∈ Rd
}

, we have

Gloc(Σ) ⊂ exp ◦

(
x 7→ −x

TΣx

2
+

{
x 7→ a+

d∑
i=1

bixi; a ∈ R, b ∈ Rd
})

.

With similar arguments and the fact that x 7→ −x
TΣx
2 is a fixed function, we have V (Gloc(Σ)) ≤ 3 + d.

F.2 Proof of Lemma 3.12

The different arguments used in this proof are from Proposition 42 of Baraud et al. [4] and Lemmas 2.6.15
and 2.6.16 from van der Vaart and Wellner [28]. We remind the reader that the VC-index is the VC-dimension
plus 1.

� For the Cauchy location-scale family, we have

C = �−1 ◦

{
x 7→ πσ

[
1 +

(
x− z
σ

)2
]

;σ > 0, z ∈ R

}
,

where �−1 is the inverse function on (0,+∞). Since{
x 7→ πσ

[
1 +

(
x− z
σ

)2
]

;σ > 0, z ∈ R

}
⊂ R2[x] =

{
x 7→ ax2 + bx+ c; (a, b, c) ∈ R3

}
and �−1 is monotone, we get that V (C) ≤ 3 + 2.
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� For univariate normal distribution, it is a direct consequence of Lemma 2.2.
� We have

L =

{
x 7→ 1

2b
exp

(
−|x− z|

b

)
; z ∈ R, b > 0

}
= exp ◦

{
x 7→ − log(2b) + b−1[(x− z) ∧ (z − x)]; z ∈ R, b > 0

}
⊂ exp ◦ ({x 7→ ax+ b; a, b ∈ R} ∧ {x 7→ ax+ b; a, b ∈ R}) .

Since exp is monotone and {x 7→ ax+ b; a, b ∈ R} is a vector space of dimension 2, we get that L is
VC-subgraph with VC-index not larger than V (L) ≤ 4.701× 2(2 + 1) + 1 = 29.206.

� Azzalini and Capitanio [2] proved that the probability density function of the skew-normal distribution is
unimodal, therefore the translation family SGα is VC-subgraph with VC-index at most 10 (see Sect. 3.2).
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[6] L. Birgé, Approximation dans les espaces métriques et théorie de l’estimation. Zeitsch. Wahrscheinlichkeitstheorie Verwand.
Gebiete 65 (1983).
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