Free Access
Issue
ESAIM: PS
Volume 4, 2000
Page(s) 25 - 52
DOI https://doi.org/10.1051/ps:2000102
Published online 15 August 2002
  1. L.D. Atwood, A.F. Wilson, J.E. Bailey-Wilson, J.N. Carruth and R.C. Elston, On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput. 25 (1996) 733-740. [CrossRef] [MathSciNet] [Google Scholar]
  2. L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 (1966) 1554-1563. [CrossRef] [MathSciNet] [Google Scholar]
  3. P.J. Bickel and Y. Ritov, Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli 2 (1996) 199-228. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.J. Bickel, Y. Ritov and T. Ryden, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat. 26 (1998) 1614-1635. [CrossRef] [MathSciNet] [Google Scholar]
  5. R.-J. Chuang and N.R. Mendell, The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput. 26 (1997) 631-648. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.A. Churchill, Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology 51 (1989) 79-94. [Google Scholar]
  7. G. Ciuperca, Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 (1999) 351-358. [Google Scholar]
  8. D. Dacunha-Castelle and M. Duflo, Probabilités et statistiques, Tome 2. Masson (1993). [Google Scholar]
  9. D. Dacunha-Castelle and E. Gassiat, Estimation of the number of components in a mixture. Bernoulli 3 (1997a) 279-299. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models. ESAIM Probab. Statist. 1 (1997b). [Google Scholar]
  11. D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 (1999) 1178-1209. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.P. Dempster, N.M. Laird and D.B. Rubin, Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 (1977) 1-38. [MathSciNet] [Google Scholar]
  13. R. Douc and C. Matias, Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models (1999) (submitted). [Google Scholar]
  14. M. Duflo, Algorithmes stochastiques. Springer (1996). [Google Scholar]
  15. Z.D. Feng and C.E. McCulloch, Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B 58 (1996) 609-617. [Google Scholar]
  16. L. Finesso, Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland (1990). [Google Scholar]
  17. D.R. Fredkin and J.A. Rice, Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B 249 (1992) 125-132. [CrossRef] [Google Scholar]
  18. P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application. Academic Press (1980). [Google Scholar]
  19. J.A. Hartigan, A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen (1985) 807-810. [Google Scholar]
  20. J. Henna, On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 (1985) 235-240. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 (1999) 514-535. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Keribin, Tests de modèles par maximum de vraisemblance, Thèse de l'Université d'Evry-Val d'Essonne (1999). [Google Scholar]
  23. C. Keribin, Consistent estimation of the Order of Mixture Models (1997) (submitted). [Google Scholar]
  24. B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl. 40 (1992) 127-143. [CrossRef] [MathSciNet] [Google Scholar]
  25. B.G. Leroux and M.L. Puterman, Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics 48 (1992) 545-558. [CrossRef] [PubMed] [Google Scholar]
  26. B.G. Lindsay, Mixture models: Theory, Geometry and Applications (1995). [Google Scholar]
  27. I.L. Mac Donald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall (1997). [Google Scholar]
  28. G.J. McLachlan, On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist. 36 (1987) 318-324. [CrossRef] [Google Scholar]
  29. L. Mevel, Statistique asymptotique pour les modèles de Markov cachés. Thèse de l'Université de Rennes I (1997). [Google Scholar]
  30. L. Mevel and F. LeGland, Exponential forgetting and Geometric Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear). [Google Scholar]
  31. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Springer-Verlag (1993). [Google Scholar]
  32. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989) 257-284. [CrossRef] [Google Scholar]
  33. T. Ryden, Estimating the order of hidden Markov models. Statistics 26 (1995) 345-354. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Vandekerkhove, Identification de l'ordre des processus ARMA stables. Contribution à l'étude statistique des chaînes de Markov cachées. Thèse de l'Université de Montpellier II (1997). [Google Scholar]
  35. A. Van der Vaart, Asymptotic Statistics. Cambridge Ed. (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.