Free Access
Volume 4, 2000
Page(s) 25 - 52
Published online 15 August 2002
  1. L.D. Atwood, A.F. Wilson, J.E. Bailey-Wilson, J.N. Carruth and R.C. Elston, On the distribution of the likelihood ratio test statistic for a mixture of two normal distributions. Comm. Statist. Simulation Comput. 25 (1996) 733-740. [CrossRef] [MathSciNet]
  2. L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37 (1966) 1554-1563. [CrossRef] [MathSciNet]
  3. P.J. Bickel and Y. Ritov, Inference in hidden Markov models I: Local asymptotic normality in the stationary case. Bernoulli 2 (1996) 199-228. [CrossRef] [MathSciNet]
  4. P.J. Bickel, Y. Ritov and T. Ryden, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Annals of Stat. 26 (1998) 1614-1635. [CrossRef] [MathSciNet]
  5. R.-J. Chuang and N.R. Mendell, The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal covariance. Comm. Statist. Simulation Comput. 26 (1997) 631-648. [CrossRef] [MathSciNet]
  6. G.A. Churchill, Stochastic models for heterogeneous DNA sequences. Bull. Math. Biology 51 (1989) 79-94.
  7. G. Ciuperca, Sur le test de maximum de vraisemblance pour le mélange de populations. Note aux C.R.A.S., 328, Série I, 4 (1999) 351-358.
  8. D. Dacunha-Castelle and M. Duflo, Probabilités et statistiques, Tome 2. Masson (1993).
  9. D. Dacunha-Castelle and E. Gassiat, Estimation of the number of components in a mixture. Bernoulli 3 (1997a) 279-299. [CrossRef] [MathSciNet]
  10. D. Dacunha-Castelle and E. Gassiat, Testing in locally conic models. ESAIM Probab. Statist. 1 (1997b).
  11. D. Dacunha-Castelle and E. Gassiat, Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes. Ann. Statist. 27 (1999) 1178-1209. [CrossRef] [MathSciNet]
  12. A.P. Dempster, N.M. Laird and D.B. Rubin, Large Maximum-likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 (1977) 1-38. [MathSciNet]
  13. R. Douc and C. Matias, Asymptotics of the Maximum Likelihood Estimator for general Hidden Markov Models (1999) (submitted).
  14. M. Duflo, Algorithmes stochastiques. Springer (1996).
  15. Z.D. Feng and C.E. McCulloch, Using bootstrap Likelihood Ratio in Finite Mixture Models. J. Roy. Statist. Soc. Ser. B 58 (1996) 609-617.
  16. L. Finesso, Consistent Estimation of the Order for Markov and Hidden Markov Chains. Ph.D. Thesis, University of Maryland (1990).
  17. D.R. Fredkin and J.A. Rice, Maximum likelihood estimation and identification directly from single-channel recordings. Proc. Roy. Soc. London Ser. B 249 (1992) 125-132. [CrossRef]
  18. P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application. Academic Press (1980).
  19. J.A. Hartigan, A failure of likelihood ratio asymptotics for normal mixtures, in Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, edited by L.M. Le Cam and R.A. Olshen (1985) 807-810.
  20. J. Henna, On estimating the number of constituents of a finite mixture of continuous distributions. Ann. Inst. Statist. Math. 37 (1985) 235-240. [CrossRef] [MathSciNet]
  21. J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 (1999) 514-535. [CrossRef] [MathSciNet]
  22. C. Keribin, Tests de modèles par maximum de vraisemblance, Thèse de l'Université d'Evry-Val d'Essonne (1999).
  23. C. Keribin, Consistent estimation of the Order of Mixture Models (1997) (submitted).
  24. B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process Appl. 40 (1992) 127-143. [CrossRef] [MathSciNet]
  25. B.G. Leroux and M.L. Puterman, Maximum Penalized Likelihood Estimation for Independent and Markov-Dependent Mixture Models. Biometrics 48 (1992) 545-558. [CrossRef] [PubMed]
  26. B.G. Lindsay, Mixture models: Theory, Geometry and Applications (1995).
  27. I.L. Mac Donald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series. Chapman and Hall (1997).
  28. G.J. McLachlan, On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture. Appl. Statist. 36 (1987) 318-324. [CrossRef]
  29. L. Mevel, Statistique asymptotique pour les modèles de Markov cachés. Thèse de l'Université de Rennes I (1997).
  30. L. Mevel and F. LeGland, Exponential forgetting and Geometric Ergodicity in Hidden Markov models. Math. Control Signals Systems (to appear).
  31. S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Springer-Verlag (1993).
  32. L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (1989) 257-284. [CrossRef]
  33. T. Ryden, Estimating the order of hidden Markov models. Statistics 26 (1995) 345-354. [CrossRef] [MathSciNet]
  34. P. Vandekerkhove, Identification de l'ordre des processus ARMA stables. Contribution à l'étude statistique des chaînes de Markov cachées. Thèse de l'Université de Montpellier II (1997).
  35. A. Van der Vaart, Asymptotic Statistics. Cambridge Ed. (1999).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.