Free Access
Volume 4, 2000
Page(s) 1 - 24
Published online 15 August 2002
  1. Azencott R. and Dacunha-Castelle D., Séries d'observations irrégulières. Masson (1984).
  2. Bahadur R. and Ranga Rao R., On deviations of the sample mean. Ann. Math. Statist.31 (1960) 1015-1027.
  3. Barndoff-Nielsen O.E. and Cox D.R., Asymptotic techniques for uses in statistics. Chapman and Hall, Londres (1989).
  4. Barone P., Gigli A. and Piccioni M., Optimal importance sampling for some quadratic forms of A.R.M.A. processes. IEEE Trans. Inform. Theory41 (1995) 1834-1844.
  5. Basor E., A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28 (1979) 975-983. [CrossRef] [MathSciNet]
  6. Basor E., Asymptotic formulas for Toeplitz and Wiener-Hopf operators. Integral Equations Operator Theory 5 (1982) 659-665. [CrossRef] [MathSciNet]
  7. Bercu B., Gamboa F. and Rouault A., Large deviations for quadratic forms of stationary Gaussian processes. Stochastic Process. Appl. 71 (1997) 75-90. [CrossRef] [MathSciNet]
  8. Book S.A., Large deviation probabilities for weighted sums. Ann. Math. Statist. 43 (1972) 1221-1234. [CrossRef] [MathSciNet]
  9. Bottcher A. and Silbermann. Analysis of Toeplitz operators. Springer, Berlin (1990).
  10. Bouaziz M., Testing Gaussian sequences and asymptotic inversion of Toeplitz operators. Probab. Math. Statist. 14 (1993) 207-222. [MathSciNet]
  11. Bryc W. and Dembo A., Large deviations for quadratic functionals of Gaussian processes. J. Theoret. Probab. 10 (1997) 307-332. [CrossRef] [MathSciNet]
  12. Bryc W. and Smolenski W., On large deviation principle for a quadratic functional of the autoregressive process. Statist. Probab. Lett.17 (1993) 281-285.
  13. Bucklew J.A., Large deviations techniques in decision, simulation, and estimation. Wiley (1990).
  14. Bucklew J. and Sadowsky J., A contribution to the theory of Chernoff bounds. IEEE Trans. Inform. Theory39 (1993) 249-254.
  15. Coursol J. and Dacunha-Castelle D., Sur la formule de Chernoff pour deux processus gaussiens stationnaires. C. R. Acad. Sci.Sér. I Math. 288 (1979) 769-770.
  16. Cramér H., Random variables and probability distributions. Cambridge University Press (1970).
  17. Dacunha-Castelle D., Remarque sur l'étude asymptotique du rapport de vraisemblance de deux processus gaussiens. C. R. Acad. Sci.Sér. I Math. 288 (1979) 225-228.
  18. Dembo A. and Zeitouni O., Large deviations techniques and applications. Jones and Barblett Pub. Boston (1993).
  19. Esseen C., Fourier analysis of distribution functions. Acta Math. 77 (1945) 1-25. [CrossRef] [MathSciNet]
  20. Gamboa F. and Gassiat E., Sets of superresolution and the maximum entropy method on the mean. SIAM J. Math. Anal.27 (1996) 1129-1152.
  21. Gamboa F. and Gassiat E., Bayesian methods for ill posed problems. Ann. Statist.25 (1997) 328-350.
  22. Golinskii B. and Ibragimov I., On Szegös limit theorem. Math. USSR- Izv. 5 (1971) 421-444. [CrossRef]
  23. Grenander V. and Szegö G., Toeplitz forms and their applications. University of California Press (1958).
  24. Guyon X., Random fields on a network/ modeling, statistics and applications. Springer (1995).
  25. Hartwig R.E. and Fisher M.E., Asymptotic behavior of Toeplitz matrices and determinants. Arch. Rational Mech. Anal. 32 (1969) 190-225. [MathSciNet]
  26. Howland J., Trace class Hankel operators. Quart. J. Math. Oxford Ser. (2) 22 (1971) 147-159. [CrossRef] [MathSciNet]
  27. Jensen J.L., Saddlepoint Approximations. Oxford Statist. Sci. Ser. 16 (1995).
  28. Johansson K., On Szegös asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. 112 (1988) 257-304. [MathSciNet]
  29. Lavielle M., Detection of changes in the spectrum of a multidimensional process. IEEE Trans. Signal Process.42 (1993) 742-749.
  30. Lehmann E.L., Testing statistical hypotheses. John Wiley and Sons, New-York (1959).
  31. Rudin W., Real and complex analysis. McGraw Hill International Editions (1987).
  32. Taniguchi M., Higher order asymptotic theory for time series analysis. Springer, Berlin (1991).
  33. Widom H., On the limit block Toeplitz determinants. Proc. Amer. Math. Soc. 50 (1975) 167-173. [CrossRef] [MathSciNet]
  34. Widom H., Asymptotic behavior of block Toeplitz matrices and determinants II. Adv. Math. 21 (1976).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.