Free Access
Issue
ESAIM: PS
Volume 4, 2000
Page(s) 53 - 135
DOI https://doi.org/10.1051/ps:2000100
Published online 15 August 2002
  1. M.V. Burnashev, On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theory Probab. Appl. 24 (1979) 107-119. [CrossRef] [Google Scholar]
  2. A. Cohen, I. Daubechies, B. Jewerth and P. Vial, Multiresolution analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris (A) 316 (1993) 417-421. [Google Scholar]
  3. A. Cohen, I. Daubechies and P. Vial, Wavelets on an interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 (1993) 54-81. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.L. Donoho and I.M. Johnstone, Minimax estimation via wavelet shrinkage. Technical Report 402 Dep. of Statistics, Stanford University (1992). [Google Scholar]
  5. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. 57 (1995) 301-369. [Google Scholar]
  6. M.S. Ermakov, Minimax detection of a signal in a Gaussian white noise. Theory Probab. Appl. 35 (1990) 667-679. [CrossRef] [MathSciNet] [Google Scholar]
  7. I.A. Ibragimov and R.Z. Khasminskii, One problem of statistical estimation in a white Gaussian noise. Soviet Math. Dokl. 236 (1977) 1351-1354. [Google Scholar]
  8. I.A. Ibragimov and R.Z. Khasminskii, Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York (1981). [Google Scholar]
  9. Yu.I. Ingster, Minimax nonparametric detection of signals in white Gaussian noise. Problems Inform. Transmission 18 (1982) 130-140. [Google Scholar]
  10. Yu.I. Ingster, Minimax testing of nonparametric hypotheses on a distribution density in Lp-metrics. Theory Probab. Appl. 31 (1986) 333-337. [Google Scholar]
  11. Yu.I. Ingster, Minimax detection of a signals in lp-metrics. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 184 (1990) 152-168 [in Russian, Transl: J. Soviet. Math. 68 (1994) 4]. [Google Scholar]
  12. Yu.I. Ingster, Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Methods Statist. 2 (1993) 85-114, 171-189, 249-268. [Google Scholar]
  13. Yu.I. Ingster, Minimax hypotheses testing for nondegenerate loss functions and extreme convex problems. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 162-188 (in Russian). [Google Scholar]
  14. Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Statist. 6 (1997) 47-69. [MathSciNet] [Google Scholar]
  15. Yu.I. Ingster, Adaptation in Minimax Nonparametric Hypothesis Testing for ellipsoids and Besov bodies. Technical Report 419, Weierstrass Institute, Berlin (1998). [Google Scholar]
  16. Yu.I. Ingster and I.A. Suslina, Minimax signal detection for Besov balls and bodies. Problems Inform. Transmission 34 (1998) 56-68. [Google Scholar]
  17. O.V. Lepski, On asymptotical exact testing of nonparametric hypotheses. CORE D.P. 9329, Université Catholique de Louvain (1993). [Google Scholar]
  18. O.V. Lepski, E. Mammen and V.G. Spokoiny, Optimal spatial adaptation to ingomogeneous smoothness: An approach based on kernal estimates with variable bandwidth selectors. Ann. Statist. 25 (1997) 929-947. [CrossRef] [MathSciNet] [Google Scholar]
  19. O.V. Lepski and V.G. Spokoiny, Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli 5 (1999) 333-358. [CrossRef] [MathSciNet] [Google Scholar]
  20. O.V. Lepski and A.B. Tsybakov, Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Discussion Paper 91, Humboldt-Univ., Berlin. Probab. Theory Related Fields (to be published). [Google Scholar]
  21. Y. Meyer, Ondlettes. Herrmann, Paris (1990). [Google Scholar]
  22. M.S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise. Problems Inform. Transmission 16 (1980) 120-133. [Google Scholar]
  23. M. Sion, On general minimax theorems. Pacific J. Math. 58 (1958) 171-176. [Google Scholar]
  24. V.G. Spokoiny, Adaptive hypothesis testing using wavelets. Ann. Stat. 24 (1996) 2477-2498. [CrossRef] [MathSciNet] [Google Scholar]
  25. V.G. Spokoiny, Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Methods Statist. 7 (1998) 245-273. [MathSciNet] [Google Scholar]
  26. I.A. Suslina, Minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 207 (1993) 127-137 (in Russian). [Google Scholar]
  27. I.A. Suslina, Extreme problems arising in minimax detection of a signal for lq-ellipsoids with a removed lp-ball. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996) 312-332 (in Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.