Open Access
Issue
ESAIM: PS
Volume 28, 2024
Page(s) 366 - 378
DOI https://doi.org/10.1051/ps/2024013
Published online 19 November 2024
  1. J. Bertoin, Lévy processes, Cambridge Tracts in Mathematics, Vol. 121. Cambridge University Press, Cambridge (1996). MR 1406564 [Google Scholar]
  2. S.I. Resnick, Extreme Values, Regular Variation and Point Processes. Springer Series in Operations Research and Financial Engineering. Springer, New York (2008) Reprint of the 1987 original. MR 2364939 [Google Scholar]
  3. S. Resnick and R. Roy, Super-extremal processes and the argmax process. J. Appl. Probab. 31 (1994) 958–978. MR 1303927 [CrossRef] [MathSciNet] [Google Scholar]
  4. A.-S. Sznitman, Vacant set of random interlacements and percolation. Ann. Math. 171 (2010) 2039–2087. MR 2680403 [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 293. Springer-Verlag, Berlin (1999). MR 1725357 [CrossRef] [Google Scholar]
  6. J. Pitman and M. Yor, A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59 (1982) 425–457. MR 656509 [CrossRef] [MathSciNet] [Google Scholar]
  7. C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Graduate Texts in Mathematics, Vol. 100. Springer-Verlag, New York (1984). MR 747302 [CrossRef] [Google Scholar]
  8. M. Liao, Lévy Processes in Lie Groups. Cambridge Tracts in Mathematics, Vol. 162. Cambridge University Press, Cambridge (2004). MR 2060091 [CrossRef] [Google Scholar]
  9. D. Applebaum, Lévy processes and stochastic integrals in Banach spaces. Probab. Math. Statist. 27 (2007) 75–88. MR 2353272 [MathSciNet] [Google Scholar]
  10. A. Rocha-Arteaga, Subordinators in a class of Banach spaces. Random Oper. Stochast. Equ. 14 (2006) 245–258. MR 2264365 [CrossRef] [Google Scholar]
  11. V. Pérez-Abreu and A. Rocha-Arteaga, On the Lévy-Khintchine representation of Lévy processes in cones of Banach spaces. Publ. Mat. Urug. 11 (2006) 41–55. MR 2245374 [MathSciNet] [Google Scholar]
  12. N. Bourbaki, Integration. II. Chapters 7–9, Elements of Mathematics. Springer-Verlag, Berlin (2004) Translated from the 1963 and 1969 French originals by Sterling K. Berberian. MR 2098271 [CrossRef] [Google Scholar]
  13. G. Högnäs and A. Mukherjea, Probability Measures on Semigroups, 2nd edn. Probability and its Applications. Springer, New York (2011). MR 2743117 [CrossRef] [Google Scholar]
  14. D. Blount and M.A. Kouritzin, On convergence determining and separating classes of functions. Stochastic Process. Appl. 120 (2010) 1898–1907. MR 2673979 [CrossRef] [MathSciNet] [Google Scholar]
  15. Z. Li, Measure-valued Branching Markov Processes. Probability and its Applications. Springer, Heidelberg (2011). MR 2760602 [CrossRef] [Google Scholar]
  16. G. Last and M. Penrose, Lectures on the Poisson Process. Institute of Mathematical Statistics Textbooks, Vol. 7. Cambridge University Press, Cambridge (2018). MR 3791470 [Google Scholar]
  17. I. Molchanov and F. Molinari, Random Sets in Econometrics. Econometric Society Monographs, Vol. 60. Cambridge University Press, Cambridge (2018). MR 3753715 [CrossRef] [Google Scholar]
  18. G.F. Lawler and V. Limic, Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics, Vol. 123. Cambridge University Press, Cambridge (2010). MR 2677157 [CrossRef] [Google Scholar]
  19. R. Schneider and W. Weil, Stochastic and Integral Geometry. Probability and its Applications. Springer-Verlag, Berlin (2008). MR 2455326 [Google Scholar]
  20. N. Berestycki, Recent Progress in Coalescent Theory. Ensaios Matematicos [Mathematical Surveys], Vol. 16. Sociedade Brasileira de Matemática, Rio de Janeiro (2009). MR 2574323 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.