Open Access
Issue
ESAIM: PS
Volume 28, 2024
Page(s) 350 - 365
DOI https://doi.org/10.1051/ps/2024011
Published online 21 November 2024
  1. K.B. Athreya and P. Ney, Branching Processes. Springer (1972). [CrossRef] [Google Scholar]
  2. C.J. Mode, Multitype Branching Processes, Theory and Applications. American Elsevier Publishing Co. (1971). [Google Scholar]
  3. M.P. Quine, The multi-type Galton–Watson process with immigration. J. Appl. Probab. 7 (1970) 411–422. [CrossRef] [Google Scholar]
  4. N. Kaplan, The multitype Galton–Watson process with immigration. Ann. Probab. 1 (1973) 947–953. [CrossRef] [Google Scholar]
  5. M. Barczy, F.K. Nedényi and G. Pap, On aggregation of multitype Galton–Watson branching processes with immigration. Mod. Stoch. Theory Appl. 5 (2018) 53–79. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Kevei and P. Wiandt, Moments of the stationary distribution of subcritical multitype Galton–Watson processes with immigration. Stat. Probab. Lett. 173 (2021) 109067. [CrossRef] [Google Scholar]
  7. G. Pap and T.T. Szabó, Change detection in INAR(p) processes against various alternative hypotheses. Comm. Statist. Theory Methods 42 (2013) 1386–1405. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Nedényi, Conditional least squares estimators for multitype Galton–Watson processes. Acta Sci. Math. (Szeged) 81 (2015) 325–348. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Foster and P. Ney, Limit laws for decomposable critical branching processes. Z. Wahrsch. Verw. Gebiete 46 (1978) 13–43. [Google Scholar]
  10. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Cambridge University Press (2009). [CrossRef] [Google Scholar]
  11. W. Feller, An Introduction to Probability Theory and its Applications. Vol. I. John Wiley & Sons (1968). [Google Scholar]
  12. J.H. Foster and J.A. Williamson, Limit theorems for the Galton-Watson process with time-dependent immigration. Z. Wahrsch. Verw. Gebiete 20 (1971) 227–235. [CrossRef] [Google Scholar]
  13. J. Marcinkiewicz and A. Zygmund, Sur les foncions independantes. Fund. Math. 28 (1937) 60–90. [CrossRef] [Google Scholar]
  14. Y.S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martingales. Springer-Verlag (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.