Open Access
Issue
ESAIM: PS
Volume 28, 2024
Page(s) 379 - 391
DOI https://doi.org/10.1051/ps/2024014
Published online 19 November 2024
  1. J.D. Biggins, The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8 (1976) 446–459. [Google Scholar]
  2. E. Aïdékon, Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 (2013) 1362–1426. [MathSciNet] [Google Scholar]
  3. Z. Shi, Branching random walks. École d’Été de Probabilités de Saint-Flour XLII – 2012. Springer (2015). [Google Scholar]
  4. A. Bandyopadhyay and P.P. Ghosh, Right-Most Position of a Last Progeny Modified Branching Random Walk. (2023) arXiv:2106.02880v3. [Google Scholar]
  5. P.P. Ghosh and B. Mallein, Extremal Process of Last Progeny Modified Branching Random Walks (2024) arXiv:2405.11609 [Google Scholar]
  6. P.P. Ghosh, Large deviations for the right-most position of a last progeny modified branching random walk. Electron. Commun. Probab. 27 (2022) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Bandyopadhyay and P.P. Ghosh, Right-most position of a last progeny modified time inhomogeneous branching random walk. Statist. Probab. Lett. 193 (2023) 109697. [CrossRef] [Google Scholar]
  8. K. Bogus, D. Buraczewski and A. Marynych, Self-similar solutions of kinetic-type equations: The boundary case. Stochast. Processes Applic. 130 (2020) 677–693. [CrossRef] [Google Scholar]
  9. D. Buraczewski, K. Kolesko and M. Meiners, Self-similar solutions to kinetic-type evolution equations: beyond the boundary case. Electron. J. Probab. 26 (2021) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.D. Biggins, Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. [CrossRef] [Google Scholar]
  11. E. Aïdékon and Z. Shi, The Seneta-Heyde scaling for the branching random walk. Ann. Probab. 42 (2014) 959–993. [MathSciNet] [Google Scholar]
  12. J. Barral, R. Rhodes and V. Vargas, Limiting laws of supercritical branching random walks. Comptes Rendus. Math. 350 (2012) 535–538. [CrossRef] [Google Scholar]
  13. R. Durrett, Probability: Theory and Examples. Cambridge University Press (2019). [CrossRef] [Google Scholar]
  14. A. Iksanov, K. Kolesko and M. Meiners, Fluctuations of Biggins’ martingales at complex parameters. Ann. Inst. Henri Poincaré Probab. Statist. 56 (2020) 2445–2479. [CrossRef] [Google Scholar]
  15. K. Fleischmann and V. Wachtel, Lower deviation probabilities for supercritical Galton-–Watson processes. Ann. Inst. H. Poincaré Probab. Statist. 43 (2007) 233–255. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.