Open Access
Issue
ESAIM: PS
Volume 27, 2023
Page(s) 621 - 667
DOI https://doi.org/10.1051/ps/2022018
Published online 16 June 2023
  1. N. Akakpo, Adaptation to anisotropy and inhomogeneity via dyadic piecewise polynomial selection. Math. Methods Stat. 21 (2012) 1–28. [CrossRef] [Google Scholar]
  2. A.W. Bowman, An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71 (1984) 353–360. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.E. Chacón, Data-driven choice of the smoothing parametrization for kernel density estimators. Can. J. Stat. 37 (2009) 249–265. [Google Scholar]
  4. J.E. Chacóon and T. Duong, Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test 19 (2010) 375–398. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.E. Chacóon and T. Duong, Unconstrained pilot selectors for smoothed cross validation. Aust. N. Zeal. J. Stat. 53 (2011) 331–351. [CrossRef] [Google Scholar]
  6. G. Cleanthous, A.G. Georgiadis and E. Porcu, Minimax Density Estimation on Sobolev Spaces With Dominating Mixed Smoothness (2019). 10.48550/arXiv.1906.06835. [Google Scholar]
  7. L. Devroye, The double kernel method in density estimation, in Annales de l’IHP Probabilitées et statistiques, vol. 25 (1989) 533–580. [Google Scholar]
  8. D.L. Donoho, I.M. Johnstone, G. Kerkyacharian and D. Picard, Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508–539. [CrossRef] [Google Scholar]
  9. T. Duong, Ks: Kernel Smoothing (2017), R package version 1.10.6. [Google Scholar]
  10. T. Duong and M. Hazelton, Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand. J. Stat. 32 (2005) 485–506. [CrossRef] [Google Scholar]
  11. A. Goldenshluger and O. Lepski, Universal pointwise selection rule in multivariate function estimation. Bernoulli 14 (2008) 1150–1190. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Goldenshluger and O. Lepski, Structural adaptation via Lp-norm oracle inequalities. Probab. Theory Related Fields 143 (2009) 41–71. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Statist. 39 (2011) 1608–1632. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Goldenshluger and O. Lepski, On adaptive minimax density estimation on Rd. Theory Probab. Appl. 159 (2014) 479–543. [CrossRef] [Google Scholar]
  15. A.V. Goldenshluger and O.V. Lepski, General selection rule from a family of linear estimators. Theory Probab. Appl. 57 (2013) 209–226. [CrossRef] [MathSciNet] [Google Scholar]
  16. N.-B. Heidenreich, A. Schindler and S. Sperlich, Bandwidth selection for kernel density estimation: a review of fully automatic selectors. Adv. Stat. Anal. 97 (2013) 403–433. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Jones, On some kernel density estimation bandwidth selectors related to the double kernel method. Sankhya 60 (1998) 249–264. [Google Scholar]
  18. M. Jones, J.S. Marron and B.U. Park, A simple root n bandwidth selector. Ann. Stat. 19 (1991) 1919–1932. [Google Scholar]
  19. C. Lacour, P. Massart and V. Rivoirard, Estimator selection: a new method with applications to kernel density estimation. Sankhya 79 (2017) 298–335. [Google Scholar]
  20. M. Lerasle, N. Malter-Magalahes and P. Reynaud-Bouret, Optimal kernel selection for density estimation. High Dimens. Probab. VII: The Cargese Volume (2016) 425–460. [CrossRef] [Google Scholar]
  21. J. Marron and M. Wand, Exact mean integrated squared error. Ann. Stat. 20 (1992) 712–736. [CrossRef] [Google Scholar]
  22. E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962) 1065–1076. [CrossRef] [Google Scholar]
  23. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2015). [Google Scholar]
  24. M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Stat. Theory Appl. 9 (1982) 65–78. [Google Scholar]
  25. D.W. Scott and G.R. Terrell, Selectors unbiased cross-validation in density estimation. J. Am. Stat. Assoc. 82 (1987) 11311146. [CrossRef] [Google Scholar]
  26. S.J. Sheather and M.C. Jones, A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. B 53 (1991) 683–690. [Google Scholar]
  27. B.W. Silverman, Density Estimation for Statistics and Data Analysis. Chapman & Hall, London (1986). [Google Scholar]
  28. I.M. Sobol, On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7 (1967) 86–112. [Google Scholar]
  29. C. Stone, An asymptotically optimal window selection rule for kernel density estimates. Ann. Stat. 12 (1984) 1285–1297. [CrossRef] [Google Scholar]
  30. M. Wand, Error analysis for general multivariate kernel estimators. J. Nonparam. Stat. 2 (1992) 1–15. [CrossRef] [Google Scholar]
  31. M. Wand and M. Jones, Comparison of smoothing parametrizations in bivariate kernel density estimation. J. Am. Stat. Assoc. 88 (1993) 520–528. [CrossRef] [Google Scholar]
  32. M. Wand and M. Jones, Kernel smoothing. Monographs on Statistics and Applied Probability (1994). [Google Scholar]
  33. M. Wand and M. Jones, Multivariate plugin bandwidth selection. Comput. Stat. 9 (1994) 97–116. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.