Open Access
Volume 27, 2023
Page(s) 576 - 620
Published online 16 June 2023
  1. R. Adamczak, D. Chafaï and P. Wolff, Circular law for random matrices with exchangeable entries. Random Struct. Algorith. 48 (2016) 454-479. [CrossRef] [Google Scholar]
  2. D.J. Aldous, Representations for partially exchangeable arrays of random Variables. J. Multivariate Anal. 11 (1981) 581-598. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.A. Arcones and E. Gine, On the bootstrap of U and V statistics. Ann. Stat. (1992) 655-674. [Google Scholar]
  4. D.M. Asta and C.R. Shalizi, Geometric network comparisons, in Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence (2015) 102-110. [Google Scholar]
  5. M. Austern and P. Orbanz, Limit theorems for distributions invariant under groups of transformations. Ann. Stat. 50 (2022) 1960-1991. [CrossRef] [Google Scholar]
  6. N.J. Baker, R. Kaartinen, T. Roslin and D.B. Stouffer, Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38 (2015) 130-139. [CrossRef] [Google Scholar]
  7. A. Barrat, M. Barthelemy, R. Pastor-Satorras and A. Vespignani, The architecture of complex weighted networks. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 3747-3752. [CrossRef] [PubMed] [Google Scholar]
  8. J. Bascompte and C.J. Melián, Simple trophic modules for complex food Webs. Ecology 86 (2005) 2868-2873. [CrossRef] [Google Scholar]
  9. P.S. Bearman, J. Moody and K. Stovel, Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110 (2004) 44-91. [CrossRef] [Google Scholar]
  10. S. Bhattacharyya and P.J. Bickel, Subsampling bootstrap of count features of Networks. Ann. Stat. 43 (2015) 2384-2411. [CrossRef] [Google Scholar]
  11. P.J. Bickel and A. Chen, A nonparametric view of network models and Newman-Girvan and other modularities, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 21068-21073. [CrossRef] [PubMed] [Google Scholar]
  12. P.J. Bickel, A. Chen and E. Levina, The method of moments and degree distributions for network models. Ann. Stat. 39 (2011) 2280-2301. [CrossRef] [Google Scholar]
  13. P. Billingsley, Probability and Measure, 3rd edn. John Wiley & Sons (1995). [Google Scholar]
  14. D. Cai, T. Campbell and T. Broderick, Edge-exchangeable graphs and sparsity. Adv. Neural Inform. Process. Syst. 29 (2016). [Google Scholar]
  15. H.D. Chiang, K. Kato and Y. Sasaki, Inference for high-dimensional exchangeable arrays. J. Am. Stat. Assoc. (2021) 1-11. [CrossRef] [PubMed] [Google Scholar]
  16. F. Chung and L. Lu, The average distances in random graphs with given expected Degrees. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 15879-15882. [CrossRef] [PubMed] [Google Scholar]
  17. H. Crane and W. Dempsey, Edge exchangeable models for interaction networks. J. Am. Stat. Assoc. 113 (2018) 1311-1326. [CrossRef] [PubMed] [Google Scholar]
  18. L. Davezies, X. D’Haultfoeuille and Y. Guyonvarch, Empirical process results for exchangeable arrays. Ann. Stat. 49 (2021) 845-862. [CrossRef] [Google Scholar]
  19. A. de La Fortelle, Generalized inverses of increasing functions and Lebesgue decomposition. Markov Processes And Related Fields (2020). [Google Scholar]
  20. P. Diaconis and S. Janson, Graph limits and exchangeable random graphs. Rend. Mat. Appl. Ser. VII 28 (2008) 33-61. [Google Scholar]
  21. J.L. Doob, Stochastic Processes, Vol. 7. Wiley New York (1953). [Google Scholar]
  22. Q. Duchemin, Y. De Castro and C. Lacour, Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains, arXiv preprint arXiv:2011.11435 (2020). [Google Scholar]
  23. Q. Duchemin, Y. De Castro and C. Lacour, Three rates of convergence or separation via U-statistics in a dependent framework. J. Mach. Learn. Res. 23 (2022) 1-59. [Google Scholar]
  24. R. Durrett, Probability: Theory and Examples, Vol. 49. Cambridge University Press (2019). [CrossRef] [Google Scholar]
  25. G.K. Eagleson and N.C. Weber, Limit theorems for weakly exchangeable arrays. Math. Proc. Camb. Philos. Soc. 84 (1978) 123-130. [CrossRef] [Google Scholar]
  26. F. Emmert-Streib, M. Dehmer and Y. Shi, Fifty years of graph matching, network alignment and network comparison. Inform. Sci. 346 (2016) 180-197. [CrossRef] [Google Scholar]
  27. W. Feller, An Introduction to Probability Theory and its Application, Vol. II. John Wiley and Sons (1971). [Google Scholar]
  28. O. Frank and D. Strauss, Markov graphs. J. Am. Stat. Assoc. 81 (1986) 832-842. [CrossRef] [Google Scholar]
  29. G. Govaert and M. Nadif, Clustering with block mixture models. Pattern Recognit. 36 (2003) 463-473. [CrossRef] [Google Scholar]
  30. P.R. Halmos, The theory of unbiased estimation. Ann. Math. Stat. 17 (1946) 34-43. [CrossRef] [Google Scholar]
  31. W. Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 (1948) 293-325. [CrossRef] [Google Scholar]
  32. P.D. Hoff, A.E. Raftery and M.S. Handcock, Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97 (2002) 1090-1098. [CrossRef] [Google Scholar]
  33. P.W. Holland, K.B. Laskey and S. Leinhardt, Stochastic blockmodels: First Steps. Soc. Netw. 5 (1983) 109-137. [CrossRef] [Google Scholar]
  34. O. Kallenberg, Multivariate sampling and the estimation problem for exchangeable arrays. J. Theor. Probab. 12 (1999) 859-883. [CrossRef] [Google Scholar]
  35. T. Konstantopoulos and L. Yuan, On the extendibility of finitely exchangeable probability measures. Trans. Am. Math. Soc. 371 (2019) 7067-7092. [Google Scholar]
  36. S. Lauritzen, A. Rinaldo and K. Sadeghi, Random networks, graphical models and Exchangeability. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 80 (2018) 481-508. [CrossRef] [Google Scholar]
  37. A.J. Lee, U-statistics: Theory and Practice. Routledge (1990). [Google Scholar]
  38. K. Levin and E. Levina, Bootstrapping networks with latent space structure, arXiv preprint arXiv:1907.10821 (2019). [Google Scholar]
  39. E. Lindenstrauss, Pointwise theorems for amenable groups. Electron. Res. Announc. Am. Math. Soc. 5 (1999) 82-90. [CrossRef] [Google Scholar]
  40. L. Lovasz and B. Szegedy, Limits of compact decorated graphs, arXiv preprint arXiv:1010.5155 (2010). [Google Scholar]
  41. J.-F. Mai, The infinite extendibility problem for exchangeable real-valued random vectors. Probab. Surv. 17 (2020) 677-753. [MathSciNet] [Google Scholar]
  42. P.-A. Maugis, S. Olhede, C. Priebe and P. Wolfe, Testing for equivalence of network distribution using subgraph counts. J. Comput. Graph. Stat. 29 (2020) 455-465. [CrossRef] [Google Scholar]
  43. H. Nandi and P. Sen, On the properties of U-statistics when the observations are not independent: Part 2. Unbiased estimation of the parameters of a finite population. Calcutta Stat. Assoc. Bull. 12 (1963) 124-148. [CrossRef] [Google Scholar]
  44. Z. Naulet, D.M. Roy, E. Sharma and V. Veitch, Bootstrap estimators for the tail-index and for the count statistics of graphex processes. Electron. J. Stat. 15 (2021) 282-325. [CrossRef] [MathSciNet] [Google Scholar]
  45. P. Orbanz and D.M. Roy, Bayesian models of graphs, arrays and other exchangeable random structures. IEEE Trans. Pattern Anal. Mach. Intell. 37 (2014) 437-461. [Google Scholar]
  46. C. Orsini, M.M. Dankulov, P. Colomer-de Simon, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguná, G. Caldarelli et al., Quantifying randomness in real networks. Nat. Commun. 6 (2015) 1-10. [CrossRef] [Google Scholar]
  47. S. Ouadah, P. Latouche and S. Robin, Motif-based tests for bipartite networks. Electron. J. Stat. 16 (2022) 293-330. [CrossRef] [MathSciNet] [Google Scholar]
  48. L. Pellissier, C. Albouy, J. Bascompte, N. Farwig, C. Graham, M. Loreau, M.A. Maglianesi, C.J. Melián, C. Pitteloud, T. Roslin et al., Comparing species interaction networks along environmental gradients. Biol. Rev. 93 (2018) 785-800. [CrossRef] [Google Scholar]
  49. F. Picard, J.-J. Daudin, M. Koskas, S. Schbath and S. Robin, Assessing the exceptionality of network motifs. J. Comput. Biol. 15 (2008) 1-20. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  50. N. Pržulj, D.G. Corneil and I. Jurisica, Modeling interactome: scale-free or geometric?. Bioinformatics 20 (2004) 3508-3515. [CrossRef] [PubMed] [Google Scholar]
  51. T.M. Przytycka, An important connection between network motifs and parsimony models, in Annual International Conference on Research in Computational Molecular Biology, Springer (2006) 321-335. [Google Scholar]
  52. G. Reinert and A. Röllin, Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47 (2010) 378-393. [CrossRef] [MathSciNet] [Google Scholar]
  53. M. Reitzner and M. Schulte, Central limit theorems for U -statistics of Poisson point processes. Ann. Probab. 41 (2013) 3879-3909. [CrossRef] [MathSciNet] [Google Scholar]
  54. H. Rubin and R. Vitale, Asymptotic distribution of symmetric statistics, Ann. Stat. (1980) 165-170. [Google Scholar]
  55. D. Scott and R. Huggins, A law of the iterated logarithm for weakly exchangeable arrays. Math. Proc. Cambr. Philos. Soc. 98 (1985) 541-545. [CrossRef] [Google Scholar]
  56. S.S. Shen-Orr, R. Milo, S. Mangan and U. Alon, Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet. 31 (2002) 64-68. [CrossRef] [PubMed] [Google Scholar]
  57. B.I. Simmons, A.R. Cirtwill, N.J. Baker, H.S. Wauchope, L.V. Dicks, D.B. Stouffer and W.J. Sutherland, Motifs in bipartite ecological networks: uncovering indirect interactions, Oikos 128 (2019) 154-170. [CrossRef] [Google Scholar]
  58. T.A. Snijders and K. Nowicki, Estimation and prediction for stochastic blockmodels for graphs with latent block structure. J. Classif. 14 (1997) 75-100. [CrossRef] [Google Scholar]
  59. D. Stark, Compound Poisson approximations of subgraph counts in random graphs. Random Struct. Algorith. 18 (2001) 39-60. [CrossRef] [Google Scholar]
  60. D.B. Stouffer, J. Camacho, W. Jiang and L.A. Nunes Amaral, Evidence for the existence of a robust pattern of prey selection in food webs. Proc. Roy. Soc. B: Biol. Sci. 274 (2007) 1931-1940. [Google Scholar]
  61. M. Tantardini, F. Ieva, L. Tajoli and C. Piccardi, Comparing methods for comparing networks. Sci. Rep. 9 (2019) 1-19. [Google Scholar]
  62. A.W. Van der Vaart, Asymptotic Statistics, Vol. 3. Cambridge University Press (2000). [Google Scholar]
  63. W.R. van Zwet, A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. verwandte Gebiete 66 (1984) 425-440. [CrossRef] [MathSciNet] [Google Scholar]
  64. Y. Wang, C. Pelekis and J. Ramon, U-statistics on network-structured data with kernels of degree larger than one, in Statistically Sound Data Mining, PMLR (2015) 37-48. [Google Scholar]
  65. S.A. Williamson, Nonparametric network models for link prediction. J. Mach. Learn. Res. 17 (2016) 7102-7121. [Google Scholar]
  66. S.J. Young and E.R. Scheinerman, Random dot product graph models for social networks, in Algorithms and Models for the Web-Graph: 5th International Workshop, WAW 2007, San Diego, CA, USA, December 11-12, 2007, Proceedings, Springer Berlin Heidelberg (2007) 138-149. [Google Scholar]
  67. L. Zhao and X. Chen, Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263-272. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.