Open Access
Issue |
ESAIM: PS
Volume 27, 2023
|
|
---|---|---|
Page(s) | 668 - 693 | |
DOI | https://doi.org/10.1051/ps/2023007 | |
Published online | 14 July 2023 |
- R. Azencott and H. Doss, L’équation de Schrödinger quand h tend vers zéro une approche probabiliste. Lect. Notes Math. 1109 (1985) 1–17. [CrossRef] [Google Scholar]
- N.H. Bian, A.G. Emsile and E.P. Kontar, A Fokker–Planck framework for studying the diffusion of radio burst waves in the solar corona. Astrophys. J. 873 (2019). [Google Scholar]
- O. Calin, D.-C. Chang and H. Fan, The heat kernel for Kolmogorov type operators and its applications. J. Fourier Anal. Appl. 15 (2009) 816–838. [CrossRef] [MathSciNet] [Google Scholar]
- O. Calin, D.-C. Chang, K. Furutany and C. Iwasaki, Heat Kernel for Elliptic and Sub-elliptic Operators. Birkhäusser (2011). [CrossRef] [Google Scholar]
- O. Calin, D.-C. Chang, J. Hu and Y. Li, Heat kernels for a class of degenerate elliptic operators using stochastic method. Complex Var. Elliptic Equ. 57 (2012). [Google Scholar]
- C. Morette-DeWitt, Feynman’s path integrals: definition without limiting procedure. Commun. Math. Phys. 28 (1972) 47–67. [CrossRef] [Google Scholar]
- R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (International Series in Pure and Applied Physics). McGraw-Hill Publishing Company (1965). [Google Scholar]
- A. Friedman, Stochastic Differential Equations and Applications. Dover Books on Mathematics, Dover Publications (2012). [Google Scholar]
- H. Gzyl, J.R. León, The Hamilton–Jacobi equation, the Feymann–Kac formula and the classical limit. Publ. Mat. Uruguay 17 (2019) 81–92. [MathSciNet] [Google Scholar]
- M. Kac, Integration in function spaces and some of its applications. Lezioni Fermiane. Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa (1980). [Google Scholar]
- I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. Graduate Texts in Mathematics, Vol. 113. Springer-Verlag, New York (1991) xxiii, 470 p. [Google Scholar]
- A. Kolmogoroff, Zufallige Bewegungen. (Zur Theorie der Brownschen Bewegung.). Ann. Math. 35 (1934) 116–117. [CrossRef] [MathSciNet] [Google Scholar]
- L.S. Schulman, Techniques and Applications of Path Integration. Reprint of the 1981 original. Dover Publications, Inc. Mineola, New York (2005). [Google Scholar]
- B. Simon, Functional Integration and Quantum Physics. Academic Press, New York (1979). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.