Open Access
Volume 27, 2023
Page(s) 694 - 722
Published online 25 July 2023
  1. S. Aazizi, Discrete-time approximation of decoupled forward–backward stochastic differential equations driven by pure jump Lévy processes. Adv. Appl. Probab. 45 (2013) 791–821. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge University Press (2009). [CrossRef] [Google Scholar]
  3. S. Asmussen and J. Rosiński, Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38 (2001) 482–493. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Bally and G. Pagès, A quantization algorithm for solving multidimensional discrete-time optimal stopping problems. Bernoulli 9 (2003) 1003–1049. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60 (1997) 57–83. [CrossRef] [Google Scholar]
  6. B. Bouchard and R. Elie, Discrete-time approximation of decoupled forward-backward SDE with jumps. Stoch. Processes Appl. 118 (2008) 53–75. [CrossRef] [Google Scholar]
  7. B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Processes Appl. 111 (2004) 175–206. [CrossRef] [Google Scholar]
  8. P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, Lp solutions of backward stochastic differential equations. Stoch. Processes Appl. 108 (2003) 109–129. [CrossRef] [Google Scholar]
  9. R. Buckdahn and E. Pardoux, BSDE’s with jumps and associated integro-partial differential equations (1994). [Google Scholar]
  10. Ł. Delong, Backward Stochastic Differential Equations with Jumps and their Actuarial and Financial Applications. Springer (2013). [Google Scholar]
  11. K. Dzhaparidze and E. Valkeila, On the Hellinger type distances for filtered experiments. Probab. Theory Related Fields 85 (1980) 105–117. [Google Scholar]
  12. M. Eddahbi, I. Fakhouri and Y. Ouknine, Lp(p ≥ 2)-solutions of generalized BSDEs with jumps and monotone generator in a general filtration. Modern Stoch. Theory Appl. 4 (2017) 25–63. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Elie, Contrôle stochastique et méthodes numériques en finance mathématique. Ph.D. thesis, University Paris-Dauphine (2006). [Google Scholar]
  14. E. Gobet and C. Labart, Error expansion for the discretization of backward stochastic differential equations. Stoch. Processes Appl. 117 (2007) 803–829. [CrossRef] [Google Scholar]
  15. J. Imai and R. Kawai, Numerical inverse Lévy measure method for infinite shot noise series representation. J. Comput. Appl. Math. 253 (2013) 264–283. [CrossRef] [MathSciNet] [Google Scholar]
  16. N.E. Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Kawai and H. Masuda, On simulation of tempered stable random variates. J. Comput. Appl. Math. 235 (2011) 2873–2887. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Kohatsu-Higa and P. Tankov, Jump-adapted discretization schemes for Lévy-driven SDEs. Stoch. Processes Appl. 120 (2010) 2258–2285. [CrossRef] [Google Scholar]
  19. T. Kruse and A. Popier, BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. Stochastics 88 (2016) 491–539. [MathSciNet] [Google Scholar]
  20. H. Kunita, Stochastic Differential Equations Based on Lévy Processes and Stochastic Flows of Diffeomorphisms. Birkhäuser Boston, Boston, MA (2004) 305–373. [Google Scholar]
  21. J.-P. Lemor, E. Gobet and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12 (2006) 889–916. [Google Scholar]
  22. M. Mrad and A. Popier, Composition of approximations of two SDEs with jumps with non-finite lévy measures. HAL preprint hal-04040355 (2023). [Google Scholar]
  23. É. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in Nonlinear Analysis, Differential Equations and Control. Springer (1999) 503–549. [Google Scholar]
  24. E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. [Google Scholar]
  25. E. Pardoux and A. Rascanu, Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Vol. 69. Springer International Publishing (2014). [CrossRef] [Google Scholar]
  26. J. Rosiński, Series representations of Lévy processes from the perspective of point processes, in edited by O.E. Barndorff-Nielsen, S.I. Resnick and T. Mikosch, Lévy Processes: Theory and Applications. Birkhäuser, Boston (2001) 401–415. [CrossRef] [Google Scholar]
  27. J. Rosiński, Tempering stable processes. Stoch. Processes Appl. 117 (2007) 677–707. [CrossRef] [Google Scholar]
  28. S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32 (1994) 1447–1475. [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Yao, Lp solutions of backward stochastic differential equations with jumps. ArXiv e-prints arXiv:1007.2226 (2010). [Google Scholar]
  30. S. Yao. Lp solutions of backward stochastic differential equations with jumps. Stoch. Processes Appl. 127 (2017) 3465–3511. [CrossRef] [Google Scholar]
  31. S. Yuan and R. Kawai, Numerical aspects of shot noise representation of infinitely divisible laws and related processes. ArXiv e-prints arXiv:2101.10533 (2021). [Google Scholar]
  32. J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Probab. 14 (2004) 459–488. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.