Open Access
Volume 24, 2020
Page(s) 661 - 687
Published online 04 November 2020
  1. V. Bansaye, B. Cloez and P. Gabriel, Ergodic behavior of non-conservative semigroups via generalized Doeblin’s conditions. Acta Appl. Math. 166 (2020) 29–72. [Google Scholar]
  2. M. Benaïm, Dynamics of stochastic approximation algorithms. In Séminaire de Probabilités, XXXIII, Vol. 1709 of Lecture Notes Math. Springer, Berlin. (1999) 1–68. [CrossRef] [Google Scholar]
  3. M. Benaïm and M.W. Hirsch, Asymptotic pseudotrajectories and chain recurrent flows, with applications. J. Dyn. Differ. Equ. 8 (1996) 141–176. [Google Scholar]
  4. L. Breiman, First exit times from a square root boundary, in Fifth Berkeley Symposium, Vol. 2. University of California Press, California (1967) 9–16. [Google Scholar]
  5. L. Breyer and G. Roberts, A quasi-ergodic theorem for evanescent processes. Stoch. Process. Appl. 84 (1999) 177–186. [CrossRef] [Google Scholar]
  6. N. Champagnat and D. Villemonais, Exponential convergence to quasi-stationary distribution and Q-process. Probab. Theory Relat. Fields 164 (2016) 243–283. [Google Scholar]
  7. N. Champagnat and D. Villemonais, General criteria for the study of quasi-stationarity. Preprint arXiv:1712.08092 (2017). [Google Scholar]
  8. N. Champagnat and D. Villemonais, Uniform convergence of conditional distributions for absorbed one-dimensional diffusions. Adv. Appl. Probab. 50 (2017) 178–203. [Google Scholar]
  9. N. Champagnat and D. Villemonais, Uniform convergence to the Q-process. Electron. Commun. Probab. 22 (2017) 7. [CrossRef] [Google Scholar]
  10. N. Champagnat and D. Villemonais, Uniform convergence of penalized time-inhomogeneous Markov processes. ESAIM: PS 22 (2018) 129–162. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Collet, S. Martínez and J. San Martin Quasi-stationary distributions, Probability and its Applications (New York). Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  12. P. Del Moral and D. Villemonais, Exponential mixing properties for time-inhomogeneous diffusion processes with killing. Bernoulli 24 (2018) 1010–1032. [CrossRef] [Google Scholar]
  13. S. Méléard and D. Villemonais, Quasi-stationary distributions and population processes. Probab. Surv. 9 (2012) 340–410. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Novikov, A martingale approach to first passage problems and a new condition for wald’s identity, in Stochastic Differential Systems. Springer, Berlin (1981) 146–156. [CrossRef] [Google Scholar]
  15. W. Oçafrain, Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically. ALEA 15 (2018) 429–451. [CrossRef] [Google Scholar]
  16. W. Oçafrain, Q-processes and asymptotic properties of Markov processes conditioned not to hit moving boundaries. Stoch. Process. Appl. 130 (2020) 3445–3476. [CrossRef] [Google Scholar]
  17. P. Salminen, On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary. Adv. Appl. Probab. 20 (1988) 411–426. [Google Scholar]
  18. A. Velleret, Unique quasi-stationary distribution, with a possibly stabilizing extinction. Preprint arXiv:1802.02409 (2018). [Google Scholar]
  19. D. Villemonais, Uniform tightness for time-inhomogeneous particle systems and for conditional distributions of time-inhomogeneous diffusion processes. Markov Process. Related Fields 19 (2013) 543–562. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.