Open Access
Volume 24, 2020
Page(s) 627 - 660
Published online 04 November 2020
  1. R.J. Adler, The geometry of random fields. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1981). [Google Scholar]
  2. R.J. Adler, G. Samorodnitsky and J.E. Taylor, Excursion sets of three classes of stable random fields. Adv. Appl. Probab. 42 (2010) 293–318. [Google Scholar]
  3. A. Baddeley, E. Rubak and R. Turner, Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press, London (2015). [Google Scholar]
  4. H. Biermé and A. Desolneux, On the perimeter of excursion sets of shot noise random fields. Ann. Probab. 44 (2016) 521–543. [Google Scholar]
  5. P. Billingsley, Probability and measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, third ed. A Wiley-Interscience Publication (1995). [Google Scholar]
  6. D.A. Bodenham and N.M. Adams, A comparison of efficient approximations for a weighted sum of chi-squared random variables. Stat. Comput. 26 (2016) 917–928. [Google Scholar]
  7. V.D. Bortoli, A. Desolneux, B. Galerne and A. Leclaire, Patch redundancy in images: A statistical testing framework and some applications. SIAM J. Imag. Sci. 12 (2019) 893–926. [CrossRef] [Google Scholar]
  8. J. Bruna and S. Mallat, Multiscale Sparse Microcanonical Models. Preprint arXiv:1801.02013 (2018). [Google Scholar]
  9. A. Buades, B. Coll and J. Morel, A non-local algorithm for image denoising, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA USA (2005) 60–65. [Google Scholar]
  10. M.J. Buckley and G. Eagleson, An approximation to the distribution of quadratic forms in normal random variables. Aust. J. Stat. 30A (1988) 150–159. [Google Scholar]
  11. R.H. Chan, X.-Q. Jin and M.-C. Yeung, The circulant operator in the Banach algebra of matrices. Linear Algebra Appl. 149 (1991) 41–53. [Google Scholar]
  12. S.N. Chiu, D. Stoyan, W.S. Kendall and J. Mecke, Stochastic geometry and its applications. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, third ed. (2013). [CrossRef] [Google Scholar]
  13. P.G. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris (1982). [Google Scholar]
  14. H. Cramér, Mathematical methods of statistics. Princeton Landmarks in Mathematics. Reprint ofthe 1946 original. Princeton University, Press, Princeton, NJ (1999). [Google Scholar]
  15. H. Cramer and H. Wold, Some theorems on distribution functions. J. London Math. Soc. 11 (1936) 290–294. [CrossRef] [Google Scholar]
  16. H. Cramér and M.R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, Reprint ofthe 1967 original. Dover Publications, Inc., Mineola, NY (2004). [Google Scholar]
  17. A. Criminisi, P. Pérez and K. Toyama, Region filling and object removal by exemplar-based image inpainting, IEEE Trans. Image Process 13 (2004) 1200–1212. [Google Scholar]
  18. D.J. Daley, The definition of a multi-dimensional generalization of shot noise. J. Appl. Probability 8 (1971) 128–135. [CrossRef] [Google Scholar]
  19. A.W. Davis, A differential equation approach to linear combinations of independent chi-squares. J. Am. Statist. Assoc. 72 (1977) 212–214. [CrossRef] [Google Scholar]
  20. V. De Bortoli, A. Desolneux, A. Durmus, B. Galerne and A. Leclaire, Maximum entropy methods for texture synthesis: theory and practice. Preprint arXiv:1912.01691 (2019). [Google Scholar]
  21. C.-A. Deledalle, L. Denis and F. Tupin, How to compare noisy patches? Patch similarity beyond Gaussian noise. Int. J. Comput. Vis. 99 (2012) 86–102. [Google Scholar]
  22. P. Diaconis and D. Freedman, On the statistics of vision: The julesz conjecture. J. Math. Psychol. 24 (1981) 112–138. [Google Scholar]
  23. A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, in ICCV IEEE International Conference on Computer Vision, Corfu, Greece, September (1999) 1033–1038. [Google Scholar]
  24. A.A. Efros and W.T. Freeman, Image quilting for texture synthesis and transfer, in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles, California, USA, August 12-17 (2001) 341–346. [Google Scholar]
  25. B. Galerne, Random fields of bounded variation and computation of their variation intensity. Adv. in Appl. Probab. 48 (2016) 947–971. [CrossRef] [Google Scholar]
  26. B. Galerne, Y. Gousseau and J. Morel, Random phase textures: Theory and synthesis. IEEE Trans. Image Process. 20 (2011) 257–267. [Google Scholar]
  27. L.A. Gatys, A.S. Ecker and M. Bethge, Texture synthesis using convolutional neural networks, in Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada (2015) 262–270. [Google Scholar]
  28. R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  29. P. Hall, Chi squared approximations to the distribution of a sum of independent random variables. Ann. Probab. 11 (1983) 1028–1036. [Google Scholar]
  30. K. He and J. Sun, Image completion approaches using the statistics of similar patches. IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014) 2423–2435. [CrossRef] [PubMed] [Google Scholar]
  31. J.P. Imhof, Computing the distribution of quadratic forms in normal Variables. Biometrika 48 (1961) 419–426. [Google Scholar]
  32. L. Isserlis, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12 (1918) 134–139. [Google Scholar]
  33. A.V. Ivanov and N.N. Leonenko, Statistical analysis of random fields. Vol. 28 of Mathematics and its Applications (Soviet Series). With a preface by A.V. Skorokhod, Translated from the Russian by A.I. Kochubinskiĭ. Kluwer Academic Publishers Group, Dordrecht (1989). [Google Scholar]
  34. J. Jain and A. Jain, Displacement measurement and its application in interframe image coding. IEEE Trans. Commun.29 (1981) 1799–1808. [Google Scholar]
  35. S. Janson, Normal convergence by higher semi-invariants with applications to sums of dependent random variables and random graphs. Ann. Probab. 16 (1988) 305–312. [Google Scholar]
  36. B. Julesz, Textons, the elements of texture perception, and their Interactions. Nature 290 (1981) 91. [PubMed] [Google Scholar]
  37. B. Julesz, Visual pattern discrimination. IRE Trans. Inf. Theory 8 (1962) 84–92. [Google Scholar]
  38. S. Kotz, N.L. Johnson and D.W. Boyd, Series representations of distributions of quadratic forms in normal variables. II. Non-central case. Ann. Math. Statist. 38 (1967) 838–848. [Google Scholar]
  39. M. Lebrun, A. Buades and J. Morel, A Nonlocal Bayesian Image Denoising Algorithm. SIAM J. Imag. Sci. 6 (2013) 1665–1688. [CrossRef] [Google Scholar]
  40. A. Leclaire, Champs a phase aléatoire et champs gaussiens pour la mesure de netteté d’images et la synthese rapide de textures. Ph.D. thesis, Université Paris Descartes (2015) 2015USPCB041. [Google Scholar]
  41. E. Levina and P.J. Bickel, Texture synthesis and nonparametric resampling of random fields. Ann. Statist. 34 (2006) 1751–1773. [CrossRef] [Google Scholar]
  42. G. Lindgren, Stationary stochastic processes. Theory and applications. Chapman & Hall/CRC Texts in Statistical Science Series. CRC Press, Boca Raton, FL (2013). [Google Scholar]
  43. Y. Lu, S. Zhu and Y.N. Wu, Learning FRAME models using CNN filters, in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12–17, 2016, Phoenix, Arizona, USA. (2016) 1902–1910. [Google Scholar]
  44. F. Móricz, U. Stadtmüller and M. Thalmaier, Strong laws for blockwise m-dependent random fields. J. Theoret. Probab. 21 (2008) 660–671. [CrossRef] [Google Scholar]
  45. A. Newson, A. Almansa, Y. Gousseau and S. Ladjal, Taking Apart Autoencoders: How do They Encode Geometric Shapes ?. working paper orpreprint (2018). [Google Scholar]
  46. S.D. Oman and S. Zacks, A mixture approximation to the distribution of a weighted sum of chi-squared variables. J. Stat. Comput. Simul. 13 (1981) 215–224. [Google Scholar]
  47. J. Portilla and E.P. Simoncelli, A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40 (2000) 49–70. [Google Scholar]
  48. J. Potthoff, Sample properties of random fields. II. Continuity. Commun. Stoch. Anal. 3 (2009) 331–348. [Google Scholar]
  49. L. Raad, A. Desolneux and J. Morel, A conditional multiscale locally gaussian texture synthesis algorithm. J. Math. Imag. Vis. 56 (2016) 260–279. [CrossRef] [Google Scholar]
  50. J. Rice, On generalized shot noise. Adv. Appl. Probab 9 (1977) 553–565. [Google Scholar]
  51. S.O. Rice, Mathematical analysis of random noise. Bell Syst. Tech J. 23 (1944) 282–332. [CrossRef] [MathSciNet] [Google Scholar]
  52. R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications (New York). Springer-Verlag, Berlin (2008). [CrossRef] [Google Scholar]
  53. U. Stadtmüller and L.V. Thanh, On the strong limit theorems for double arrays of blockwise M-dependent random variables. Acta Math. Sin. (Engl. Ser.) 27 (2011) 1923–1934. [CrossRef] [Google Scholar]
  54. M. Unser, P. Thévenaz and L.P. Yaroslavsky, Convolution-based interpolation for fast, high-quality rotation of images, IEEE Trans. Image Process. 4 (1995) 1371–1381. [Google Scholar]
  55. J.J. van Wijk, Spot noise texture synthesis for data visualization, in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, Providence, RI, USA, April 27–30 (1991) 309–318. [Google Scholar]
  56. A.T.A. Wood, An f approximation to the distribution of a linear combination of chi-squared variables. Commun. Stat. Simul. Comput 18 (1989) 1439–1456. [Google Scholar]
  57. G. Xia, S. Ferradans, G. Peyré and J. Aujol, Synthesizing and mixing stationary gaussian texture models. SIAM J. Imag. Sci. 7 (2014) 476–508. [CrossRef] [Google Scholar]
  58. J.I. Yellott, Implications of triple correlation uniqueness for texture statistics and the julesz conjecture. J. Opt. Soc. Am. A 10 (1993) 777–793. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.