Open Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 435 - 453
DOI https://doi.org/10.1051/ps/2020017
Published online 06 October 2020
  1. M. Albertus and P. Berthet, Auxiliary information: the raking-ratio empirical process. Electron. J. Stat. 13 (2019) 120–165. [Google Scholar]
  2. M.D. Bankier, Estimators based on several stratified samples with applications to multiple frame surveys. J. Am. Stat. Assoc. 81 (1986) 1074–1079. [Google Scholar]
  3. P. Berthet and D.M. Mason, Revisiting two strong approximation results of Dudley and Philipp. JSTOR 51 (2006) 155–172. [Google Scholar]
  4. D.A Binder and A. Théberge, Estimating the variance of raking-ratio estimators. Canad. J. Statist. 16 (1988) 47–55. [CrossRef] [Google Scholar]
  5. L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329–375. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.J. Brackstone and J.N.K. Rao, An investigation of raking ratio estimators. Indian J. Stat. 41 (1979) 97–114. [Google Scholar]
  7. G. Choudhry and H. Lee, Variance estimation for the canadian labour force survey. Survey Methodol. 13 (1987) 147–161. [Google Scholar]
  8. W.E. Deming and F.F. Stephan, On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11 (1940) 427–444 [CrossRef] [Google Scholar]
  9. C.T. Ireland and S. Kullback, Contingency tables with given marginals. Biometrika 55 (1968) 179–188. [CrossRef] [PubMed] [Google Scholar]
  10. H.S Konijn, Biases, variances and covariances of raking ratio estimators for marginal and cell totals and averages of observed characteristics. Metrika 28 (1981) 109–121. [Google Scholar]
  11. D. Pollard, Asymptotics via empirical processes. Statist. Sci. 4 (1989) 341–366. [CrossRef] [Google Scholar]
  12. R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Statist. 35 (1964) 876–879. [CrossRef] [Google Scholar]
  13. F.F. Stephan, An iterative method of adjusting sample frequency tables when expected marginal totals are known. Ann. Math. Stat. 13 (1942) 166–178. [CrossRef] [Google Scholar]
  14. M. Talagrand, Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994) 28–76. [Google Scholar]
  15. A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics (Springer-Verlag, New York, 1996). With applications to statistics. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.