Open Access
Issue |
ESAIM: PS
Volume 24, 2020
|
|
---|---|---|
Page(s) | 454 - 525 | |
DOI | https://doi.org/10.1051/ps/2019022 | |
Published online | 06 October 2020 |
- H. Albrecher and S. Asmussen, Ruin Probabilities Vol. 14. World Scientific, Singapore (2010). [Google Scholar]
- H. Albrecher and A. Cani, Risk theory with affine dividend payment strategies, in Number Theory–Diophantine Problems, Uniform Distribution and Applications. Springer, Berlin (2017) 25–60. [Google Scholar]
- H. Albrecher and J. Ivanovs, A risk model with an observer in a Markov environment. Risks 1 (2013) 148–161. [CrossRef] [Google Scholar]
- H. Albrecher and J. Ivanovs, Power identities for Lévy risk models under taxation and capital injections. Stoch. Syst. 4 (2014) 157–172. [CrossRef] [Google Scholar]
- H. Albrecher and J. Ivanovs, Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations. Stoch. Process. Appl. 127 (2017) 643–656. [CrossRef] [Google Scholar]
- H. Albrecher and J. Ivanovs, Linking dividends and capital injections–a probabilistic approach. Scand. Actuar. J. 2018 (2018) 76–83. [Google Scholar]
- H. Albrecher and J. Ivanovs, On the joint distribution of tax payments and capital injections for a Lévy risk model. Probab. Math. Stat. 37 (2018) 219–227. [CrossRef] [Google Scholar]
- H. Albrecher, S. Borst, O. Boxma and J. Resing, The tax identity in risk theory—a simple proof and an extension. Insur. Math. Econ. 44 (2009) 304–306. [Google Scholar]
- H. Albrecher, F. Avram and D. Kortschak, On the efficient evaluation of ruin probabilities for completely monotone claim distributions. J. Comput. Appl. Math. 233 (2010) 2724–2736. [Google Scholar]
- H. Albrecher, H.U Gerber and E.S.W. Shiu, The optimal dividend barrier in the Gamma–Omega model. Eur. Actuar. J. 1 (2011) 43–55. [Google Scholar]
- H. Albrecher, F. Avram, C. Constantinescu and J. Ivanovs, The tax identity for Markov additive risk processes. Method. Comput. Appl. Probab. 16 (2014) 245–258. [CrossRef] [Google Scholar]
- H. Albrecher, J. Ivanovs and X. Zhou, Exit identities for Lévy processes observed at Poisson arrival times. Bernoulli 22 (2016) 1364–1382. [CrossRef] [Google Scholar]
- S. Asmussen, Applied probability and queues, Vol. 51. Springer, Berlin (2003). [Google Scholar]
- S. Asmussen and T. Rolski, Computational methods in risk theory: a matrix-algorithmic approach. Insur. Math. Econ. 10 (1992) 259–274. [Google Scholar]
- S. Asmussen, F. Avram and M.R. Pistorius, Russian and american put options under exponential phase-type Lévy models. Stoch. Process. Appl. 109 (2004) 79–111. [CrossRef] [Google Scholar]
- F. Avram and D. Goreac, A pontryaghin minimum principle approach for the optimization of dividends of spectrally negative markov processes, until a generalized drawdown time. Scand. Actuar. J. 9 (2019) 799–823. [Google Scholar]
- F. Avram and A. Minca, Steps towards a management toolkit for central branch risk networks, using rational approximations and matrix scale functions, in Modern trends in controlled stochastic processes: theory and applications, edited by A.B. Piunovskyi. Luniver Press (2015) 263–285. [Google Scholar]
- F. Avram and A. Minca, On the central management of risk networks. Adv. Appl. Probab. 49 (2017) 221–237. [Google Scholar]
- F. Avram and M. Vidmar, First passage problems for upwards skip-free random walks via the Φ, W, Z paradigm. Preprint arXiv:1708.06080 (2017). [Google Scholar]
- F. Avram and X. Zhou, On fluctuation theory for spectrally negative Lévy processes with Parisian reflection below, and applications. Theory Probab. Math. Stat. 95 (2017) 17–40. [CrossRef] [Google Scholar]
- F. Avram, T. Chan and M. Usabel, On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and carr’s approximation for american puts. Stoch. Process. Appl. 100 (2002) 75–107. [CrossRef] [Google Scholar]
- F. Avram, A. Kyprianou and M. Pistorius, Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14 (2004) 215–238. [Google Scholar]
- F. Avram, D.-C. Fotso and A. Horváth, On moments based Padé approximations of ruin probabilities. J. Comput. Appl. Math. 235 (2011) 3215–3228. [Google Scholar]
- F. Avram, A. Horvath and M.R. Pistorius, On matrix exponential approximations of the infimum of a spectrally negative Lévy process. Preprint arXiv:1210.2611 (2012). [Google Scholar]
- F. Avram, R. Biard, C. Dutang, S. Loisel and L. Rabehasaina, A survey of some recent results on risk theory. ESAIM: PS 44 (2014) 322–337. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Avram, A.D. Banik and A. Horvath, Ruin probabilities by Padé’s method: simple moments based mixed exponential approximations (Renyi, De Vylder, Cramér–Lundberg), and high precision approximations with both light and heavy tails. Eur. Actuar. J. 9 (2019) 273–299. [Google Scholar]
- F. Avram, D. Goreac and J.-F. Renaud, The Løkka-Zervos Alternative for a Cramér-Lundberg Process with Exponential Jumps. Risks 7 (2019) 120. [CrossRef] [Google Scholar]
- F. Avram, D. Grahovac and C. Vardar-Acar, The W, Z/ν, δ paradigm for the first passage of strong markov processes without positive jumps. Risks 7 (2019) 18. [CrossRef] [Google Scholar]
- F. Avram, A. Horváth, S. Provost and U. Solon, On the Padé and Laguerre-Tricomi-Weeks Moments Based Approximations of the Scale Function W and of the Optimal Dividends Barrier for Spectrally Negative Lévy Risk Processes. Risks 7 (2019) 273–299. [Google Scholar]
- F. Avram, B. Li and S. Li, General drawdown of general tax model in a time-homogeneous Markov framework. Preprint arXiv:1810.02079 (2018). [Google Scholar]
- F. Avram, Z. Palmowski and M.R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process. Ann. Appl. Probab. 17 (2007) 156–180. [Google Scholar]
- F. Avram, Z. Palmowski and M.R. Pistorius, On Gerber–Shiu functions and optimal dividend distribution for a Lévy risk process in the presence of a penalty function. Ann. Appl. Probab. 25 (2015) 1868–1935. [Google Scholar]
- F. Avram, J.L. Pérez and K. Yamazaki, Spectrally negative Lévy processes with Parisian reflection below and classical reflection above. Stoch. Process. Appl. 128 (2018) 255–290. [CrossRef] [Google Scholar]
- F. Avram, N.L. Vu and X. Zhou, On taxed spectrally negative Lévy processes with draw-down stopping. Insur. Math. Econ. 76 (2017) 69–74. [Google Scholar]
- P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model. Math. Finance 15 (2005) 261–308. [CrossRef] [Google Scholar]
- P. Azcue and N. Muler, Stochastic in Insurance: A Dynamic Programming Approach. Springer, Berlin (2014). [Google Scholar]
- J. Azéma and M. Yor, Une solution simple au probleme de Skorokhod, in Séminaire de probabilités XIII. Springer, Berlin (1979), 90–115. [CrossRef] [Google Scholar]
- E.J. Baurdoux, Last exit before an exponential time for spectrally negative Lévy processes. J. Appl. Probab. 46 (2009) 542–558. [Google Scholar]
- E. Bayraktar, A.E. Kyprianou and K. Yamazaki, On optimal dividends in the dual model. ASTIN Bull. J. IAA 43 (2013) 359–372. [CrossRef] [Google Scholar]
- E. Baurdoux, J.C. Pardo, J.L. Pérez and J.-F. Renaud, Gerber-Shiu distribution at Parisian ruin for Lévy insurance risk processes. J. Appl. Probab. 53 (2016) 572–584. [Google Scholar]
- E.J. Baurdoux, Z. Palmowski and M.R. Pistorius. On future drawdowns of Lévy processes. Stoch. Process. Appl. 127 (2017) 2679–2698. [CrossRef] [Google Scholar]
- J. Bertoin, Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. Ann. Appl. Probab. 7 (1997) 156–169. [Google Scholar]
- J. Bertoin, Lévy processes, Vol. 121. Cambridge University Press, Cambridge (1998). [Google Scholar]
- N.H. Bingham, Continuous branching processes and spectral positivity. Stoch. Process. Appl. 4 (1976) 217–242. [CrossRef] [Google Scholar]
- O.J. Boxma, A.L. and D. Perry, Threshold strategies for risk processes and their relation to queueing theory. J. Appl. Probab. 48 (2011) 29–38. [Google Scholar]
- E. Boguslavskaya, On optimization of dividend flow for a company in a presence of liquidation value. Available at http://www.boguslavsky.net/fin/dividendflow.pdf (2003). [Google Scholar]
- A.A. Borovkov, Stochastic processes in queueing theory, Vol. 4. Springer Science & Business Media, Berlin (2012). [Google Scholar]
- P.J. Brockwell, S.I. Resnick and R.L. Tweedie, Storage processes with general release rule and additive inputs. Adv. Appl. Probab. 14 (1982) 392–433. [Google Scholar]
- H. Bühlmann, Mathematical methods in risk theory, Vol. 172. Springer Science & Business Media, Berlin (2007). [Google Scholar]
- P. Carr, First-order calculus and option pricing. J. Financial Eng. 1 (2014) 1450009. [CrossRef] [Google Scholar]
- M.E. Caballero, J.-L.P. Garmendia and G.-U. Bravo, A Lamperti-type representation of continuous-state branching processes with immigration. Ann. Probab. 41 (2013) 1585–1627. [Google Scholar]
- T. Chan, A.E. Kyprianou and M. Savov, Smoothness of scale functions for spectrally negative Lévy processes. Probab. Theory Relat. Fields 150 (2011) 691–708. [Google Scholar]
- C. Cai and B. Li, Occupation times of intervals until last passage times for spectrally negative Lévy processes. J. Theor. Probab. 31 (2018) 2194–2215. [Google Scholar]
- M.E. Caballero, A. Lambert and G.U. Bravo, Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009) 62–89. [CrossRef] [Google Scholar]
- I. Czarna, J.-L. Pérez, T. Rolski and K. Yamazaki, Fluctuation theory for level-dependent Lévy risk processes. Preprint arXiv:1712.00050 (2017). [Google Scholar]
- B. de Finetti. Su un’impostazione alternativa della teoria collettiva del rischio, in Vol. 2 of Transactions of the XVth international congress of Actuaries (1957) 433–443. [Google Scholar]
- F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion. Insur. Math. Econ. 10 (1991) 51–59. [Google Scholar]
- F. Dufresne, H.U. Gerber and Elias S.W. Shiu, Risk theory with the gamma process. ASTIN Bull. 21 (1991) 177–192. [CrossRef] [Google Scholar]
- D.C.M. Dickson, On the distribution of the surplus prior to ruin. Insur. Math. Econ. 11 (1992) 191–207. [Google Scholar]
- K. Debicki, K.M. Kosiński and M. Mandjes, On the infimum attained by a reflected Lévy process. Queueing Syst. 70 (2012) 23–35. [Google Scholar]
- K. Debicki and M. Mandjes, Queues and Lévy fluctuation theory. Springer, Berlin (2015). [CrossRef] [Google Scholar]
- R.A. Doney, Some excursion calculations for spectrally one-sided Lévy processes in Séminaire de Probabilités XXXVIII. Springer, Berlin (2005) 5–15. [Google Scholar]
- R.A. Doney, Fluctuation Theory for Levy Processes: École d’Été de Probabilités de Saint-Flour XXXV-2005. Springer, Berlin (2007). [Google Scholar]
- L. Döring and M. Savov, (Non)Differentiability and asymptotics for potential densities of subordinators. Electron. J. Probab. 16 (2011) 470–503. [Google Scholar]
- L.E. Dubins, L.A. Shepp, A.N. Shiryaev, Optimal stopping rules and maximal inequalities for Bessel processes. Theory Probab. Appl. 38 (1994) 226–261. [CrossRef] [Google Scholar]
- D. Dickson and H.R. Waters, Some optimal dividends problems. Astin Bull. 34 (2004) 49–74. [CrossRef] [Google Scholar]
- M. Egami and T. Oryu, An excursion-theoretic approach to regulator’s bank reorganization problem. Operat. Res. 63 (2015) 527–539. [CrossRef] [Google Scholar]
- H.U. Gerber, Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Ph.D. thesis, ETH Zurich (1969). [Google Scholar]
- H.U. Gerber, Games of economic survival with discrete-and continuous-income processes. Operat. Res. 20 (1972) 37–45. [CrossRef] [Google Scholar]
- H.U. Gerber, X.S. Lin and H. Yang. A note on the dividends-penalty identity and the optimal dividend barrier. ASTIN Bull. J. IAA 36 (2006) 489–503. [CrossRef] [Google Scholar]
- D. Grahovac, Densities of ruin-related quantities in the Cramér-Lundberg model with Pareto claims. Method. Comput. Appl. Probab. 20 (2018) 273–288. [CrossRef] [Google Scholar]
- H.U. Gerber and E.S.W. Shiu, On the time value of ruin. North Am. Actuar. J. 2 (1998) 48–72. [CrossRef] [Google Scholar]
- H.U. Gerber and E.S.W. Shiu, Optimal dividends: analysis with Brownian motion. North Am. Actuar. J. 8 (2004) 1–20. [CrossRef] [Google Scholar]
- H.U. Gerber, E.S.W. Shiu and H. Yang, The Omega model: from bankruptcy to occupation times in the red. Eur. Actuar. J. 2 (2012) 259–272. [Google Scholar]
- C. Hernandez, M. Junca and H. Moreno-Franco. A time of ruin constrained optimal dividend problem for spectrally one-sided Lévy processes. Insur. Math. Econ. 79 (2018) 57–68. [Google Scholar]
- D. Hobson, Optimal stopping of the maximum process: a converse to the results of Peskir. Stoch. Int. J. Probab. Stoch. Process.79 (2007) 85–102. [CrossRef] [Google Scholar]
- M. Huzak, M. Perman, H. Sikic and Z. Vondracek, Ruin probabilities and decompositions for general perturbed risk processes. Ann. Appl. Probab. 7 (2004) 1378–1397. [Google Scholar]
- J. Ivanovs and Z. Palmowski, Occupation densities in solving exit problems for Markov additive processes and their reflections. Stoch. Process. Appl. 122 (2012) 3342–3360. [CrossRef] [Google Scholar]
- J. Ivanovs, One-sided Markov additive processes and related exit problems, Ph.D. thesis, Eurandom (2011). [Google Scholar]
- J. Ivanovs, Spectrally-negative Markov additive processes 1.0. Mathematica 8.0 package available from: https://sites.google.com/site/jevgenijsivanovs/files (2013). [Google Scholar]
- J. Ivanovs, Potential measures of one-sided Markov additive processes with reflecting and terminating barriers. J. Appl. Probab. 51 (2014) 1154–1170. [Google Scholar]
- J. Ivanovs, Sparre Andersen identity and the last passage time. J. Appl. Probab. 53 (2016) 600–605. [Google Scholar]
- M. Jacobsen and A.T. Jensen, Exit times for a class of piecewise exponential Markov processes with two-sided jumps. Stoch. Process.Appl. 117 (2007) 1330–1356. [CrossRef] [Google Scholar]
- M. Jeanblanc-Picqué and A.N. Shiryaev, Optimization of the flow of dividends. Russ. Math. Surv. 50 (1995) 257. [CrossRef] [Google Scholar]
- A. Kuznetsov, A.E. Kyprianou and V. Rivero, The theory of scale functions for spectrally negative Lévy processes, in Lévy Matters II. Springer, Berlin (2013), 97–186. [Google Scholar]
- A. Kyprianou and R. Loeffen, Refracted Lévy processes. Ann. Inst. Henri Poincaré, Prob. Stat. 46 (2010) 24–44. [CrossRef] [Google Scholar]
- L. Kruk, J. Lehoczky, K. Ramanan and S. Shreve, An explicit formula for the skorokhod map on [0, a]. Ann. Probab. 35 (2007) 1740–1768. [Google Scholar]
- A.E. Kyprianou and Z. Palmowski, A martingale review of some fluctuation theory for spectrally negative Lévy processes, in Séminaire de Probabilités XXXVIII. Springer, Berlin (2005) 16–29. [CrossRef] [Google Scholar]
- A. Kyprianou and Z. Palmowski, Fluctuations of spectrally negative Markov additive processes, in Séminaire de probabilités XLI. Springer, Berlin (2008) 121–135. [CrossRef] [Google Scholar]
- A. Kyprianou, J.C. Pardo and J.L. Pérez, Occupation times of refracted Lévy processes. J. Theor. Probab. 27 (2014) 1292–1315. [Google Scholar]
- A.E. Kyprianou and B.A. Surya, Principles of smooth and continuous fit in the determination of endogenous bankruptcy levels. Finance Stoch. 11 (2007) 131–152. [CrossRef] [Google Scholar]
- K. Kawazu and S. Watanabe, Branching processes with immigration and related limit theorems. Theory Probab. Appl. 16 (1971) 36–54. [CrossRef] [Google Scholar]
- A. Kyprianou, Gerber–Shiu risk theory. Springer Science & Business Media, Berlin (2013). [CrossRef] [Google Scholar]
- A. Kyprianou, Fluctuations of Lévy Processes with Applications: Introductory Lectures. Springer Science & Business Media, Berlin (2014). [CrossRef] [Google Scholar]
- J.P. Lehoczky, Formulas for stopped diffusion processes with stopping times based on the maximum. Ann. Probab. 5 (1977) 601–607. [Google Scholar]
- S. Li, The distribution of the dividend payments in the compound Poisson risk model perturbed by diffusion. Scand. Actuar. J. 2006 (2006) 73–85. [Google Scholar]
- K. Lindensjö and F. Lindskog. Optimal dividends and capital injection under dividend restrictions. Preprint arXiv:1902.06294, (2019). [Google Scholar]
- D. Landriault, B. Li and S. Li, Analysis of a draw-down-based regime-switching Lévy insurance model. Insur. Math. Econ. 60 (2015) 98–107. [Google Scholar]
- D. Landriault, B. Li and H. Zhang, On magnitude, asymptotics and duration of drawdowns for Lévy models. Bernoulli 23 (2017) 432–458. [CrossRef] [Google Scholar]
- D. Landriault, B. Li and H. Zhang, A unified approach for drawdown (drawup) of time-homogeneous Markov processes. J. Appl. Probab. 54 (2017) 603–626. [Google Scholar]
- R.L. Loeffen, On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes. Ann. Appl. Probab. 18 (2008) 1669–1680. [Google Scholar]
- R.L. Loeffen, Stochastic control for spectrally negative Lévy processes. University of Bath, Bath (2008). [Google Scholar]
- S. Loisel, Differentiation of some functionals of risk processes, and optimal reserve allocation. J. Appl. Probab. 42 (2005) 379–392. [Google Scholar]
- B. Li and Z. Palmowski, Fluctuations of Omega-killed spectrally negative Lévy processes. Stoch. Process. Appl. 128 (2018) 3273–3299. [CrossRef] [Google Scholar]
- R.L. Loeffen and J.-F. Renaud, De Finetti’s optimal dividends problem with an affine penalty function at ruin. Insur. Math. Econ. 46 (2010) 98–108. [Google Scholar]
- D. Landriault, J.-F. Renaud and X. Zhou, Occupation times of spectrally negative Lévy processes with applications. Stoch. Process. Appl. 121 (2011) 2629–2641. [CrossRef] [Google Scholar]
- D. Landriault, J.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays. Method. Comput. Appl. Probab. 16 (2014) 583–607. [CrossRef] [Google Scholar]
- R.L. Loeffen, J.-F. Renaud and X. Zhou, Occupation times of intervals until first passage times for spectrally negative Lévy processes. Stoch. Process. Appl. 124 (2014) 1408–1435. [CrossRef] [Google Scholar]
- F. Lundberg, I. Approximerad framstallning af sannolikhetsfunktionen: II. Aterforsakring af kollektivrisker. Uppsala. 1903. [Google Scholar]
- B. Li, L. Vu and X. Zhou, Exit problems for general draw-down times of spectrally negative Lévy processes. Preprint arXiv:1702.07259 (2017). [Google Scholar]
- X.S. Lin, G.E. Willmot and S. Drekic, The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function. Insur. Math. Eco. 33 (2003) 551–566. [CrossRef] [Google Scholar]
- Y. Li, C. Yin and X. Zhou, On the last exit times for spectrally negative Lévy processes. J. Appl. Probab. 54 (2017) 474–489. [Google Scholar]
- A. Løkka and M. Zervos, Optimal dividend and issuance of equity policies in the presence of proportional costs. Insur. Math. Econ. 42 (2008) 954–961. [Google Scholar]
- B. Li and X. Zhou, On weighted occupation times for refracted spectrally negative Lévy processes. J. Math. Anal. Appl. 466 (2018) 215–237. [Google Scholar]
- Y. Li, X. Zhou and N. Zhu, Two-sided discounted potential measures for spectrally negative Lévy processes. Stat. Probab. Lett. 100 (2015) 67–76. [Google Scholar]
- E. Mayerhofer, Three essays on stopping. Preprint arXiv:1909.13050 (2019). [Google Scholar]
- M.H. Miller and F. Modigliani, Dividend policy, growth, and the valuation of shares. J. Bus. 34 (1961) 411–433. [Google Scholar]
- A. Mijatovic and M.R. Pistorius, On the drawdown of completely asymmetric Lévy processes. Stoch. Process. Appl. 122 (2012) 3812–3836. [CrossRef] [Google Scholar]
- L. Nguyen-Ngoc and M. Yor, Some martingales associated to reflected Lévy processes, in Séminaire de probabilités XXXVIII. Springer, Berlin (2005) 42–69. [CrossRef] [Google Scholar]
- K. Noba, J.-L. Pérez, K. Yamazaki and K. Yano, On optimal periodic dividend strategies for Lévy risk processes. Insur. Math. Econ. 80 (2018) 29–44. [Google Scholar]
- E.S. Page, Continuous inspection schemes. Biometrika 41 (1954) 100–115. [Google Scholar]
- G. Peskir, Optimal stopping of the maximum process: The maximality principle. Ann. Probab. 26 (1998) 1614–1640. [Google Scholar]
- P. Picard, On some measures of the severity of ruin in the classical Poisson model. Insur. Math. Econ. 14 (1994) 107–115. [Google Scholar]
- M.R Pistorius, On doubly reflected completely asymmetric Lévy processes. Stoch. Process. Appl. 107 (2003) 131–143. [CrossRef] [Google Scholar]
- M.R Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum. J. Theor. Probab. 17 (2004) 183–220. [Google Scholar]
- M.R. Pistorius, A potential-theoretical review of some exit problems of spectrally negative Lévy processes. Séminaire de Probabilités XXXVIII (2005) 30–41. [CrossRef] [Google Scholar]
- M.R. Pistorius, An excursion-theoretical approach to some boundary crossing problems and the Skorokhod embedding for reflected Lévy processes, in Séminaire de Probabilités XL. Springer, Berlin (2007) 287–307. [CrossRef] [Google Scholar]
- C. Paroissin and L. Rabehasaina, First and last passage times of spectrally positive Lévy processes with application to reliability. Method. Comput. Appl. Probab. 17 (2015) 351–372. [CrossRef] [Google Scholar]
- J.-L. Pérez and K. Yamazaki, On the optimality of periodic barrier strategies for a spectrally positive Lévy process. Insur. Math. Econ. 77 (2017) 1–13. [Google Scholar]
- J.-L. Pérez and K. Yamazaki, Mixed periodic-classical barrier strategies for Lévy risk processes. Risks 6 (2018) 33. [CrossRef] [Google Scholar]
- J.-L. Pérez and K. Yamazaki, On the refracted–reflected spectrally negative Lévy processes. Stoch. Process. Appl. 128 (2018) 306–331. [CrossRef] [Google Scholar]
- J.-L. Pérez, K. Yamazaki, A. Bensoussan, Optimal periodic replenishment policies for spectrally positive Lévy demand processes. Preprint arXiv:1806.09216 (2018). [Google Scholar]
- L.M. Ricciardi, A.D. Crescenzo, V. Giorno and A.G. Nobile, An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Jp. 50 (1999) 247–322. [Google Scholar]
- J.-F. Renaud, On the time spent in the red by a refracted Lévy risk process. J. Appl. Probab. 51 (2014) 1171–1188. [Google Scholar]
- J.-F. Renaud, De finetti’s control problem with parisian ruin for spectrally negative Lévy processes. Preprint arXiv:1906.05076 (2019). [Google Scholar]
- T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic processes for insurance and finance, volume 505. John Wiley & Sons, New York (2009). [Google Scholar]
- K.-i. Sato, Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge (1999). [Google Scholar]
- N.J. Starreveld, R. Bekker, M. Mandjes, Occupation times of alternating renewal processes with Lévy applications. Preprint arXiv:1602.05131 (2016). [Google Scholar]
- H. Schmidli, Stochastic control in insurance. Springer Science & Business Media, New York (2007). [Google Scholar]
- S.E. Shreve, J.P. Lehoczky and D.P. Gaver, Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J. Control Opt. 22 (1984) 55–75. [CrossRef] [Google Scholar]
- L. Shepp and A.N. Shiryaev, The Russian option: reduced regret. Ann. Appl. Probab. 3 (1993) 631–640. [Google Scholar]
- V.N. Suprun, Problem of destruction and resolvent of a terminating process with independent increments. Ukr. Math. J. 28 (1976) 39–51. [CrossRef] [Google Scholar]
- A. Shiryaev, P. Xu and X.Y. Zhou, Thou shalt buy and hold. Quant. Finance 8 (2008) 765–776. [Google Scholar]
- H.M. Taylor, A stopped Brownian motion formula. Ann. Probab. 3 (1975) 234–246. [Google Scholar]
- M. Vidmar, Exit problems for positive self-similar Markov processes with one-sided jumps. Preprint arXiv:1807.00486 (2018). [Google Scholar]
- M. Vidmar, First passage upwards for state dependent-killed spectrally negative Lévy processes. Preprint arXiv:1803.04885 (2018). [Google Scholar]
- M. Vidmar, A temporal factorization at the maximum for spectrally negative positive self-similar Markov processes. Preprint arXiv:1805.04036 (2018). [Google Scholar]
- W. Wang, Y. Wang and X. Wu, Dividend and capital injection optimization with transaction cost for spectrally negative Lévy risk processes. Preprint arXiv:1807.11171 (2018). [Google Scholar]
- W. Wang and X. Zhou, General drawdown-based de Finetti optimization for spectrally negative Lévy risk processes. J. Appl. Probab. 55 (2018) 513–542. [Google Scholar]
- K. Yamazaki, Inventory control for spectrally positive Lévy demand processes. Math. Operat. Res. 42 (2016) 212–237. [CrossRef] [Google Scholar]
- C. Yin and Y. Wen, Optimal dividend problem with a terminal value for spectrally positive Lévy processes. Insur. Math. Econ. 53 (2013) 769–773. [Google Scholar]
- Y. Zhao, P. Chen and H. Yang, Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes. Insur. Math. Econ. 74 (2017) 135–146. [Google Scholar]
- X. Zhou, Exit problems for spectrally negative Lévy processes reflected at either the supremum or the infimum. J. Appl. Probab. 44 (2007) 1012–1030. [Google Scholar]
- C. Zhang and R. Wu, Total duration of negative surplus for the compound Poisson process that is perturbed by diffusion. J. Appl. Probab. 39 (2002) 517–532. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.