Open Access
Volume 24, 2020
Page(s) 526 - 580
Published online 09 October 2020
  1. W.W. Adams and P. Loustaunau, An introduction to Gröbner bases, in Vol. 3 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1994). [CrossRef] [Google Scholar]
  2. E.D. Andjel, Invariant measures for the zero range processes. Ann. Probab. 10 (1982) 525–547. [Google Scholar]
  3. O. Angel, The stationary measure of a 2-type totally asymmetric exclusion process. J. Combin. Theory Ser. A 113 (2006) 4. [CrossRef] [Google Scholar]
  4. M. Balázs, F. Rassoul-Agha, T. Seppäläinen and S. Sethuraman, Existence of the zero range process and a deposition model with superlinear growth rates. Ann. Probab. 35 (2007) 1201–1249. [Google Scholar]
  5. R.A. Blythe and M.R. Evans, Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40 (2007) R333–R441. [CrossRef] [Google Scholar]
  6. O. Cappé, E. Moulines and T. Rydén, Inference in hidden Markov models. Springer Science & Business Media, Berlin (2006). [Google Scholar]
  7. J. Casse and J.-F. Marckert, Markovianity of the invariant distribution of probabilistic cellular automata on the line. Stoch. Process Appl. 125 (2015) 3458–3483. [CrossRef] [Google Scholar]
  8. N. Crampe, E. Ragoucy and M. Vanicat, Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. Theory Exp. 11 (2014) P11032. [Google Scholar]
  9. P. Dai Pra, P. Louis and S. Roelly, Stationary Measures and Phase Transition for a Class of Probabilistic Cellular Automata. ESAIM: PS 6 (2002) 89–104. [CrossRef] [EDP Sciences] [Google Scholar]
  10. B. Derrida, M.R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26 (1993) 1493–1517. [CrossRef] [MathSciNet] [Google Scholar]
  11. Z.-J. Ding, Z.-Y. Gao, J. Long, Y.-B. Xie, J.-X. Ding, X. Ling, R. Kühne and Q. Shi. Phase transition in 2d partially asymmetric simple exclusion process with two species. J. Stat. Mech. Theory Exp. 2014 (2014) P10002. [CrossRef] [Google Scholar]
  12. M.R. Evans, S.N. Majumdar and R.K.P. Zia, Factorized steady states in mass transport models. J. Phys. A 37 (2004) L275–L280. [CrossRef] [Google Scholar]
  13. L. Fajfrová, T. Gobron and E. Saada, Invariant measures of mass migration processes. Electron. J. Probab. 21 (2016) 60. [Google Scholar]
  14. J.-C. Faugère, Personal page. Available from: (2020). [Google Scholar]
  15. L. Fredes and J.-F. Marckert, Maple file and pdf file. Available at:, (2020). [Google Scholar]
  16. H-O. Georgii, Gibbs Measures and Phase Transitions, Series:De Gruyter Studies in Mathematics 9, De Gruyter, Berlin (2011). [CrossRef] [Google Scholar]
  17. R.L. Greenblatt and J.L. Lebowitz, Product measure steady states of generalized zero range processes. J. Phys. A 39 (2006) 1565–1573. [CrossRef] [Google Scholar]
  18. T.E. Harris, Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 (1972) 66–89. [CrossRef] [Google Scholar]
  19. C. Kipnis and C. Landim, Scaling limits of interacting particle systems, Vol. 320 of Fundamental Principles of Mathematical Sciences. Springer-Verlag, Berlin (1999). [Google Scholar]
  20. R. Kraaij, Stationary product measures for conservative particle systems and ergodicity criteria. Electron. J. Probab. 18 (2013) 88. [Google Scholar]
  21. T.M. Liggett, Interacting particle systems, Classics in Mathematics. Springer-Verlag, Berlin (2005). [CrossRef] [Google Scholar]
  22. J. Mairesse and I. Marcovici, Probabilistic cellular automata and random fields with iid directions. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014) 455–475. [CrossRef] [Google Scholar]
  23. J.M. Swart, A Course in Interacting Particle Systems (2017). [Google Scholar]
  24. A. Toom, N. Vasilyev, O. Stavskaya, L. Mityushin, G. Kurdyumov and S. Pirogov, Stochastic cellular systems: ergodicity, memory, morphogenesis (Part: Discrete local Markov systems. Manchester University Press, Manchester (1990), 1–182. [Google Scholar]
  25. N.B. Vasilyev, Bernoulli and Markov stationary measures in discrete local interactions, Vol. 1 of Developments in Statistics. Academic Press, New York (1978). [Google Scholar]
  26. N.B. Vasilyev and O.K. Kozlov, Reversible Markov chains with local interactions. Adv. Probab. Related Topics 6 (1980) 451–469. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.