Open Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 408 - 434
DOI https://doi.org/10.1051/ps/2019025
Published online 25 September 2020
  1. M. Ajtai, J. Komlós and G. Tusnády, On optimal matchings. Combinatorica 4 (1984) 259–264. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Ambrosio, F. Stra and D. Trevisan, A PDE approach to a 2-dimensional matching problem. Probab. Theory Related Fields 173 (2019) 433–477. [CrossRef] [Google Scholar]
  3. E. Boissard and T. Le Gouic, On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014) 539–563. [CrossRef] [Google Scholar]
  4. J.-R. Chazottes and F. Redig, Concentration inequalities for Markov processes via coupling. Electron. J. Probab. 14 (2009) 1162–1180. [Google Scholar]
  5. J.-R. Chazottes and S. Gouëzel, Optimal concentration inequalities for dynamical systems. Commun. Math. Phys. 316 (2012) 843–889. [Google Scholar]
  6. I. Daubechies, Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41 (1988) 909–996. [Google Scholar]
  7. J. Dedecker and X. Fan, Deviation inequalities for separately Lipschitz functionals of iterated random functions. Stochastic Process. Appl. 125 (2015) 60–90. [CrossRef] [Google Scholar]
  8. J. Dedecker and F. Merlevède, Behavior of the empirical Wasserstein distance in Rd under moment conditions. Electron. J. Probab. 24 (2019). [Google Scholar]
  9. S. Dereich, M. Scheutzow and R. Schottstedt, Constructive quantization: approximation by empirical measures. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013) 1183–1203. [CrossRef] [Google Scholar]
  10. R.M. Dudley, Real analysis and probability. Vol. 74 of Cambridge Studies in Advanced Mathematics. Revised reprint ofthe 1989 original. MR 1932358. Cambridge University Press, Cambridge (2002). [Google Scholar]
  11. A. Eberle, Reflection couplings and contraction rates for diffusions. Probab. Theory Related Fields 166 (2016) 851–886. [CrossRef] [Google Scholar]
  12. N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 (2015) 707–738. [CrossRef] [Google Scholar]
  13. J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981) 713–747. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Joulin, A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature. Bernoulli 15 (2009) 532–549. [CrossRef] [Google Scholar]
  15. A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo. Ann. Probab. 38 (2010) 2418–2442. [Google Scholar]
  16. B.R. Kloeckner, An optimal transportation approach to the decay of correlations for non-uniformly expanding maps. Ergodic Theory Dyn. Syst. 40 (2020) 714–750. [CrossRef] [Google Scholar]
  17. B. Kloeckner, Effective Berry-Esseen and concentration bounds for Markov chains with a spectral gap. Ann. Appl. Probab. 29 (2019) 1778–1807. [Google Scholar]
  18. B.R. Kloeckner, A.O. Lopes and M. Stadlbauer, Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics of expanding maps. Nonlinearity 28 (2015) 4117–4137. [Google Scholar]
  19. A. Kontorovich, Obtaining measure concentration from Markov contraction. Markov Process. Related Fields 18 (2012) 613–638. [Google Scholar]
  20. J.C. Mason, Near-best multivariate approximation by Fourier series, Chebyshev series and Chebyshev interpolation. J. Approx. Theory 28 (1980) 349–358. [Google Scholar]
  21. Y. Meyer, Wavelets and operators. Vol. 1. Cambridge University Press (1992). [Google Scholar]
  22. P. Monmarché, On H1 and entropic convergence for contractive PDMP. Electron. J. Probab. 20 (2015). [PubMed] [Google Scholar]
  23. Y. Ollivier, Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256 (2009) 810–864. [Google Scholar]
  24. D. Paulin, Mixing and concentration by Ricci curvature. J. Funct. Anal. 270 (2016) 1623–1662. [Google Scholar]
  25. M.H. Schultz, Linf-multivariate approximation theory. SIAM J. Numer. Anal. 6 (1969) 161–183. [Google Scholar]
  26. M. Talagrand, Matching random samples in many dimensions. Ann. Appl. Probab. 2 (1992) 846–856. [Google Scholar]
  27. M. Talagrand, Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994) 28–76. [Google Scholar]
  28. A.W. van der Vaart and J.A. Wellner, Weak convergence and empirical processes. With applications to statistics. MR 1385671. Springer Series in Statistics. Springer-Verlag, New York (1996). [CrossRef] [Google Scholar]
  29. R. van Handel, Probability in high dimension, APC 550 Lecture Notes. Princeton University (1996). Available from: http://www.princeton.edu/~rvan/APC550.pdf. [Google Scholar]
  30. J. Weed and F. Bach, Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli 25 (2019) 2620–2648. [CrossRef] [Google Scholar]
  31. J. Weed and Q. Berthet, Estimation of smooth densities in wasserstein distance. Preprint arXiv:1902.01778 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.