Open Access
Volume 24, 2020
Page(s) 399 - 407
Published online 25 September 2020
  1. A. Dembo and O. Zeitouni, Stochastic Modelling and Applied Probability, in Large deviations techniques and applications, Vol. 38. Corrected reprint of the second (1998) edn., Springer-Verlag, Berlin (2010). [Google Scholar]
  2. M.I. Freidlin and A.D. Wentzell, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], in Random perturbations of dynamical systems, Vol. 260. 2nd edn., Translated fromthe 1979 Russian original by Joseph Szücs. Springer-Verlag, New York (1998). [Google Scholar]
  3. S. Herrmann and J. Tugaut, Mean-field limit versus small-noise limit for some interacting particle systems. Commun. Stoch. Anal. 10 (2016) 4. [Google Scholar]
  4. S. Herrmann, P. Imkeller and D. Peithmann, Large deviations and a Kramers’ type law for self-stabilizing diffusions. Ann. Appl. Probab. 18 (2008) 1379–1423. [Google Scholar]
  5. S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995), Vol. 1627 of Lecture Notes in Mathematics, Springer, Berlin (1996) 42–95. [CrossRef] [Google Scholar]
  6. A.-S. Sznitman, Topics in propagation of chaos, In École d’Été de Probabilités de Saint-Flour XIX—1989, Vol. 1464 of Lecture Notes in Mathematics, Springer, Berlin (1991) 165–251. [CrossRef] [Google Scholar]
  7. J. Tugaut, Exit problem of McKean-Vlasov diffusions in convex landscapes, Electron. J. Probab. 17 (2012) 1–26. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.