Open Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 227 - 243
DOI https://doi.org/10.1051/ps/2020005
Published online 24 March 2020
  1. H. Biermé and A. Estrade, Poisson random balls: self similarity and X-ray images. Adv. Appl. Prob. 38 (2006) 1–20. [Google Scholar]
  2. H. Biermé, A. Estrade and I. Kaj, Self-similar random fields and rescaled random balls models. J. Theoret. Probab. 23 (2010) 1110–1141. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-C. Breton and C. Dombry. Rescaled weighted random balls models and stable self-similar random fields. Stoch. Proc. Appl. 119 (2009) 3633–3652. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-C. Breton, A. Clarenne and R. Gobard, Macroscopic analysis of determinantal random balls. 25 (2019) 1568–1601. [Google Scholar]
  5. D.J. Daley and D. Vere-Jones, Introduction to point processes. Volumes 1 and 2, 2nd Ed (2002). [Google Scholar]
  6. M.A. de Gosson, Symplectic Methods in Harmonic Analysis and in Mathematical Physics, vol. 7 (2011) 185–198. [CrossRef] [Google Scholar]
  7. N. Deng, W. Zhou and M. Haenggi, The Ginibre Point Process as a Model for Wireless Networks with Repulsion. Preprint arXiv:1401.3677 (2014). [Google Scholar]
  8. R. Gobard, Random balls model with dependence. J. Math. Anal. Appl. 423 (2015) 1284–1310. [Google Scholar]
  9. J.B. Hough, M. Krishnapur, Y. Peres and B. Virág, Zeros of Gaussian Analytic Functions and Determinantal Point Processes. In Vol. 51 of University Lecture series. AMS (2009). [CrossRef] [Google Scholar]
  10. I. Kaj, L. Leskelä, I. Norros and V. Schmidt, Scaling limits for random fields with long-range dependence. Ann. Probab. 35 (2007) 528–550. [Google Scholar]
  11. I. Kaj and M.S. Taqqu, Convergence to fractional Brownian motion and to the Telecom process: the integral representation approach. In and out of equilibrium. 2. Progr. Probab. 60 (2008) 383–427. [Google Scholar]
  12. T. Mikosch, S. Resnick, H. Rootzén and A. Stegeman, Is network traffic approximated by stable Lévy motion of fractional Brownian motion ?. Ann. App. Probab. 12 (2002) 23–68. [CrossRef] [MathSciNet] [Google Scholar]
  13. N. Miyoshi and T. Shirai, A cellular model with Ginibre configured base stations. Adv. Appl. Probab. 46 (2014) 832–845. [Google Scholar]
  14. G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall (1994). [Google Scholar]
  15. X. Yang and A.P. Petropulu, Co-Channel interference modeling in a Poisson field of interferers in wireless communications. IEEE Trans. Signal Process. 51 (2003) 64–76. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.