Free Access
Issue
ESAIM: PS
Volume 24, 2020
Page(s) 207 - 226
DOI https://doi.org/10.1051/ps/2019023
Published online 18 March 2020
  1. R. Abraham and O. Riviere, Forward-backward stochastic differentialequations and PDE with gradient dependent second order coefficients. ESAIM: PS 10 (2006) 184–205. [CrossRef] [EDP Sciences] [Google Scholar]
  2. G. Barles, R. Buckdahn and E. Pardoux, Backward stochastic differentialequations and integral-partial differential equations. Stochast. Stochast. Rep. 60 (1997) 57–83. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Biswas, H. Ishii, S. Saha and L. Wang, On viscosity solution of HJBequations with state constraints and reflection control. SIAM J. Control Optim. 55 (2017) 365–396. [Google Scholar]
  4. M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27 (1992) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDEs, and related obstacle problems forPDEs. Ann. Probab. 25 (1997) 702–737. [Google Scholar]
  6. P. Hsu, Probabilistic approach to the neumann problem. Commun. Pure Appl. Math. 38 (1985) 445–472. [Google Scholar]
  7. Y. Hu, Probabilistic interpretation of a system of quasilinear elliptic partial differential equations under Neumann boundary conditions. Stoch. Process. Appl. 48 (1993) 107–121. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Jiang, Convexity, translation invariance and subadditivity forg-expectations and related risk measures. Ann. Appl. Probab. 18 (2008) 245–258. [Google Scholar]
  9. J. Li and Q. Wei, Optimal control problems of fully coupled FBSDEs and viscosity solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 52 (2014) 1622–1662. [Google Scholar]
  10. W. Li, Y. Peng and J. Liu, Reflected forward-backward stochastic differential equations and related PDEs. Stoch. Anal. Appl. 34 (2016) 906–926. [Google Scholar]
  11. J. Ma and J. Cvitanić, Reflected forward-backward SDEs and obstacleproblems with boundary conditions. J. Appl. Math. Stoch. Anal. 14 (2001) 113–138. [CrossRef] [Google Scholar]
  12. P. Marín-Rubio and J. Real, Some results on stochastic differential equations with reflecting boundary conditions. J. Theor. Probab. 17 (2004) 705–716. [CrossRef] [Google Scholar]
  13. E. Pardoux and S. Peng, Backward stochastic differential equations andquasilinear parabolic partial differential equations. In: Stochastic partial differential equations and their applications, edited by B.L. Rozovskii and R. Sowers. Springer (1992) 200–217. [CrossRef] [Google Scholar]
  14. E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumannboundary value problems. Prob. Theory Related Fields 110 (1998) 535–558. [CrossRef] [Google Scholar]
  15. E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Prob. Theory Related Fields 114 (1999) 123–150. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Peng, Probabilistic interpretation for systems of quasilinearparabolic partial differential equations. Stoch. Stoch. Rep. 37 (1991) 61–74. [CrossRef] [Google Scholar]
  17. Y. Ren and N. Xia, Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition. Stoch. Anal. Appl. 24 (2006) 1013–1033. [Google Scholar]
  18. Z. Wu and Z. Yu, Probabilistic interpretation for a system of quasilinearparabolic partial differential equation combined with algebra equations. Stoch. Process. Appl. 124 (2014) 3921–3947. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Xu, Reflected backward SDEs with two barriers under monotonicity and general increasing conditions. J. Theor. Prob. 20 (2007) 1005–1039. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.