Free Access
Issue |
ESAIM: PS
Volume 19, 2015
|
|
---|---|---|
Page(s) | 605 - 625 | |
DOI | https://doi.org/10.1051/ps/2015008 | |
Published online | 02 December 2015 |
- O. Adelman and N. Enriquez, Random walks in random environment: what a single trajectory tells. Israel J. Math. 142 (2004) 205–220. [CrossRef] [MathSciNet] [Google Scholar]
- S. Alili. Asymptotic behaviour for random walks in random environments. J. Appl. Probab. 36 (1999) 334–349. [CrossRef] [Google Scholar]
- P. Andreoletti. On the concentration of Sinai’s walk. Stochastic Process. Appl. 116 (2006) 1377–1408. [CrossRef] [MathSciNet] [Google Scholar]
- P. Andreoletti, Almost sure estimates for the concentration neighborhood of Sinai’s walk. Stochastic Processes Appl. 117 (2007) 1473–1490. [CrossRef] [Google Scholar]
- P. Andreoletti, On the estimation of the potential of Sinai’s RWRE. Braz. J. Probab. Stat. 25 (2011) 121–144. [CrossRef] [MathSciNet] [Google Scholar]
- P. Andreoletti and R. Diel, DNA unzipping via stopped birth and death processes with unknown transition probabilities. Appl. Math. Res. eXpress 2012 (2012) 184–208. [Google Scholar]
- V. Baldazzi, S. Cocco, E. Marinari and R. Monasson, Inference of DNA sequences from mechanical unzipping: an ideal-case study. Phys. Rev. Lett. 96 (2006) 128–102. [CrossRef] [Google Scholar]
- L.E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist. 37 (1966) 1554–1563. [CrossRef] [MathSciNet] [Google Scholar]
- L.E. Baum, T. Petrie, G. Soules and N. Weiss, A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41 (1970) 164–171. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Bickel and Y. Ritov, Inference in hidden Markov models. I: Local asymptotic normality in the stationary case. Bernoulli 2 (1996) 199–228. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Bickel, Y. Ritov and T. Rydén, Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models. Ann. Stat. 26 (1998) 1614–1635. [Google Scholar]
- L. Bogachev, Random walks in random environments. Edited by J.P. Francoise, G. Naber and S.T. Tsou. Encycl. Math. Phys. 4 (2006) 353–371. [Google Scholar]
- R.H. Byrd, P. Lu, J. Nocedal and C.Y. Zhu, A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16 (1995) 1190–1208. [Google Scholar]
- O. Cappé, E. Moulines and T. Rydén, Inference in hidden Markov models. Springer Ser. Statist. Springer, New York (2005). [Google Scholar]
- A. Chambaz and C. Matias, Number of hidden states and memory: a joint order estimation problem for Markov chains with Markov regime. ESAIM: PS 13 (2009) 38–50. [CrossRef] [EDP Sciences] [Google Scholar]
- A. Chernov, Replication of a multicomponent chain by the lightning mechanism. Biofizika 12 (1967) 297–301. [PubMed] [Google Scholar]
- F. Comets, M. Falconnet, O. Loukianov and D. Loukianova, Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support. Technical report. Preprint 1404.2551 (2014). [Google Scholar]
- F. Comets, M. Falconnet, O. Loukianov, D. Loukianova and C. Matias, Maximum likelihood estimator consistency for ballistic random walk in a parametric random environment. Stochastic Processes Appl. 124 (2014) 268–288. [CrossRef] [Google Scholar]
- A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39 (1977) 1–38. [Google Scholar]
- R. Douc and C. Matias, Asymptotics of the maximum likelihood estimator for general hidden Markov models. Bernoulli 7 (2001) 381–420. [CrossRef] [MathSciNet] [Google Scholar]
- R. Douc, E. Moulines, J. Olsson and R. van Handel, Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Stat. 39 (2011) 474–513. [Google Scholar]
- R. Douc, É. Moulines and T. Rydén, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime. Ann. Stat. 32 (2004) 2254–2304. [Google Scholar]
- Y. Ephraim and N. Merhav, Hidden Markov processes. Special issue on Shannon theory: perspective, trends, and applications. IEEE Trans. Inform. Theory 48 (2002) 1518–1569. [CrossRef] [MathSciNet] [Google Scholar]
- M. Falconnet, A. Gloter and D. Loukianova, Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment. Math. Methods Stat. 23 (2014) 159–175. [CrossRef] [Google Scholar]
- M. Falconnet, D. Loukianova and C. Matias, Asymptotic normality and efficiency of the maximum likelihood estimator for the parameter of a ballistic random walk in a random environment. Math. Methods Stat. 23 (2014) 1–19. [CrossRef] [Google Scholar]
- V. Genon-Catalot and C. Laredo, Leroux’s method for general hidden Markov models. Stochastic Processes Appl. 116 (2006) 222–243. [CrossRef] [MathSciNet] [Google Scholar]
- B.D. Hughes, Random walks and random environments, Random environments. Vol. 2 of Oxford Science Publications. The Clarendon Press Oxford University Press, New York (1996). [Google Scholar]
- J.L. Jensen and N.V. Petersen, Asymptotic normality of the maximum likelihood estimator in state space models. Ann. Statist. 27 (1999) 514–535. [CrossRef] [MathSciNet] [Google Scholar]
- H. Kesten, M.V. Kozlov and F. Spitzer, A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145–168. [Google Scholar]
- F. Le Gland and L. Mevel, Exponential forgetting and geometric ergodicity in hidden Markov models. Math. Control Signals Syst. 13 (2000) 63–93. [CrossRef] [Google Scholar]
- B.G. Leroux, Maximum-likelihood estimation for hidden Markov models. Stochastic Process. Appl. 40 (1992) 127–143. [CrossRef] [MathSciNet] [Google Scholar]
- T.A. Louis, Finding the observed information matrix when using the EM algorithm. J. R. Stat. Soc. Ser. B 44 (1982) 226–233. [Google Scholar]
- S. Meyn and R.L. Tweedie, Markov chains and stochastic stability, 2nd edition. Cambridge University Press, Cambridge (2009). [Google Scholar]
- H. Ōsawa, Reversibility of first-order autoregressive processes. Stochastic Processes Appl. 28 (1988) 61–69. [CrossRef] [Google Scholar]
- P. Révész, Random walk in random and non-random environments, 2nd edition. World Scientific (2005). [Google Scholar]
- Z. Shi, Sinai’s walk via stochastic calculus. Panoramas et Synthèses 12 (2001) 53–74. [Google Scholar]
- Y. Sinai, The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27 (1982) 247–258. [Google Scholar]
- F. Solomon, Random walks in a random environment. Ann. Probab. 3 (1975) 1–31. [CrossRef] [Google Scholar]
- D.E. Temkin, One-dimensional random walks in a two-component chain. Soviet Math. Dokl. 13 (1972) 1172–1176. [Google Scholar]
- O. Zeitouni, Random walks in random environment. In Lectures on probability theory and statistics. Vol. 1837 of Lect. Notes Math. Springer, Berlin (2004) 189–312. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.