Issue |
ESAIM: PS
Volume 19, 2015
|
|
---|---|---|
Page(s) | 605 - 625 | |
DOI | https://doi.org/10.1051/ps/2015008 | |
Published online | 02 December 2015 |
Hidden Markov model for parameter estimation of a random walk in a Markov environment
1
Laboratoire MAPMO, UMR CNRS 6628, Fédération Denis-Poisson,
Université d’Orléans, Orléans, France
Pierre.Andreoletti@univ-orleans.fr
2
Laboratoire de Mathématiques et Modélisation d’Évry, Université
d’Évry Val d’Essonne, UMR CNRS 8071, Évry, France
dasha.loukianova@maths.univ-evry.fr
3
Laboratoire de Probabilités et Modèles Aléatoires, UMR CNRS 7599,
Université Pierre et Marie Curie, Université Paris Diderot,
Paris,
France
catherine.matias@math.cnrs.fr
Received: 19 November 2014
Revised: 1 April 2015
We focus on the parametric estimation of the distribution of a Markov environment from the observation of a single trajectory of a one-dimensional nearest-neighbor path evolving in this random environment. In the ballistic case, as the length of the path increases, we prove consistency, asymptotic normality and efficiency of the maximum likelihood estimator. Our contribution is two-fold: we cast the problem into the one of parameter estimation in a hidden Markov model (HMM) and establish that the bivariate Markov chain underlying this HMM is positive Harris recurrent. We provide different examples of setups in which our results apply, in particular that of DNA unzipping model, and we give a simple synthetic experiment to illustrate those results.
Mathematics Subject Classification: 62M05 / 62F12 / 60J25
Key words: Hidden Markov model / Markov environment / maximum likelihood estimation / random walk in random environment
© EDP Sciences, SMAI, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.