Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 626 - 648
DOI https://doi.org/10.1051/ps/2015012
Published online 02 December 2015
  1. A.D. Bain, Crisan, Fundamentals of stochastic filtering. Vol. 60 of Stoch. Model. Appl. Probab. Springer, New York (2009). [Google Scholar]
  2. J.A. Bather, Bayes Procedures for Deciding the Sign of a Normal Mean. In vol. 58 of Proc. Camb. Philos. Soc. (1962) 599–620. [Google Scholar]
  3. P.J. Bickel and Y.A. Yahav, On the Wiener Process Approximation to Bayesian Sequential Testing Problems. In vol. 1 of Proc. of Sixth Berkeley Symp. Math. Statist. Probab. (1972) 57–84. [Google Scholar]
  4. J. Breakwell and H. Chernoff, Sequential tests for the mean of a normal distribution. II. (Large t). Ann. Math. Statist. 35 (1964) 162–173. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Chernoff, Sequential Tests for the Mean of a Normal Distribution. In vol. 1 of Proc. of 4th Berkeley Sympos. Math. Statist. Prob. (1961) 79–91. [Google Scholar]
  6. H. Chernoff, Sequential tests for the mean of a normal distribution III (small t). Ann. Math. Statist. 36 (1965) 28–54. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Chernoff, Sequential tests for the mean of a normal distribution IV (discrete case). Ann. Math. Statist. 36 (1965) 55–68. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Ekström, Properties of American option prices. Stochastic Process. Appl. 114 (2004) 265–278. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Gapeev and G. Peskir, The Wiener sequential testing problem with finite horizon. Stoch. Stoch. Rep. 76 (2004) 59–75. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Jacka, Optimal stopping and the American put. Math. Finance 1 (1991) 1–14. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Janson and J. Tysk, Volatility time and properties of option prices. Ann. Appl. Probab. 13 (2003) 890–913. [CrossRef] [Google Scholar]
  12. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, 2nd edition. Vol. 113 of Grad. Texts Math. Springer-Verlag, New York (1991). [Google Scholar]
  13. I. Karatzas and S. Shreve, Methods of Mathematical Finance. Vol. 39 of Appl. Math. Springer-Verlag, New York (1998). [Google Scholar]
  14. A. Klenke, Probability Theory: A Comprehensive Course. Universitext. Springer–Verlag, London (2008). [Google Scholar]
  15. T.L. Lai, Nearly optimal sequential tests of composite hypotheses. Ann. Statist. 16 (1988) 856–886. [CrossRef] [MathSciNet] [Google Scholar]
  16. T.L. Lai, On optimal stopping problems in sequential hypothesis testing. Statistica Sinica 7 (1997) 33–51. [Google Scholar]
  17. B. Øksendal, Stochastic Differential Equations. An Introduction with Applications, 6th edition. Universitext. Springer-Verlag, Berlin (2003). [Google Scholar]
  18. G. Peskir, A change-of-variable formula with local time on curves. J. Theoret. Probab. 18 (2005) 499–535. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Peskir, On the American option problem. Math. Finance 15 (2005) 169–181. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Peskir and A. Shiryaev, Optimal Stopping and Free-Boundary Problems. Lect. Math. ETH Zürich. Birkhäuser Verlag, Basel (2006). [Google Scholar]
  21. A.N. Shiryaev, Two problems of sequential analysis. Cybernetics 3 (1967) 63–69. [CrossRef] [Google Scholar]
  22. M. Zhitlukhin and A. Muravlev, On Chernoff’s hypotheses testing problem for the drift of a Brownian motion. Theory Probab. Appl. 574 (2013) 708–717. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.