Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 649 - 670
DOI https://doi.org/10.1051/ps/2015011
Published online 04 December 2015
  1. P. Bickel, Y. Ritov and A. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37 (2009) 1705–1732. [Google Scholar]
  2. S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence. OUP, Oxford (2013). [Google Scholar]
  3. S. Cohen and E. Le Pennec, Conditional density estimation by penalized likelihood model selection and applications. Research Report RR-7596 (2011). [Google Scholar]
  4. B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, Least angle regression. Ann. Stat. 32 (2004) 407–499. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Massart, Concentration inequalities and model selection. Vol. 33 of Lect. Notes Math. Springer, Saint-Flour, Cantal (2007). [Google Scholar]
  6. P. Massart and C. Meynet, The Lasso as an 1-ball model selection procedure. Electron. J. Stat. 5 (2011) 669–687. [Google Scholar]
  7. G. McLachlan and D. Peel, Finite Mixture Models. Wiley series in probability and statistics: Applied probability and statistics. Wiley (2004). [Google Scholar]
  8. C. Meynet, An 1-oracle inequality for the lasso in finite mixture gaussian regression models. ESAIM: PS 17 (2013) 650–671. [CrossRef] [EDP Sciences] [Google Scholar]
  9. P. Rigollet and A. Tsybakov, Exponential screening and optimal rates of sparse estimation. Ann. Stat. 39 (2011) 731–771. [CrossRef] [Google Scholar]
  10. N. Städler, P. Bühlmann and S. Van de Geer, 1-penalization for mixture regression models. Test 19 (2010) 209–256. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Tibshirani, Regression shrinkage and selection via the lasso. J.R. Stat. Soc. Ser. B. 58 (1996) 267–288. [Google Scholar]
  12. S. van de Geer and P. Bühlmann, On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3 (2009) 1360–1392. [Google Scholar]
  13. S. van de Geer, P. Bühlmann and S. Zhou, The adaptive and the thresholded lasso for potentially misspecified models (and a lower bound for the lasso). Electron. J. Stat. 5 (2011) 688–749. [CrossRef] [Google Scholar]
  14. A.W. van der Vaart and J. Wellner, Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Ser. Stat. Springer (1996). [Google Scholar]
  15. V. Vapnik, Estimation of Dependences Based on Empirical Data. Springer Ser. Stat. Springer-Verlag, New York (1982). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.