Free Access
Issue |
ESAIM: PS
Volume 19, 2015
|
|
---|---|---|
Page(s) | 194 - 203 | |
DOI | https://doi.org/10.1051/ps/2014021 | |
Published online | 26 August 2015 |
- G. Barles, R. Buchdahn and E. Pardoux, BSDE’s and integral-partial differential equations. Stoch. Stoch. Rep. 60 (1997) 57–83. [Google Scholar]
- J.M. Bismut, Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44 (1973) 384–404. [CrossRef] [MathSciNet] [Google Scholar]
- J. Cvitanic and I. Karatzas, Backward SDEs with reflection and Dynkin games. Ann. Probab. 24 (1996) 2024–2056. [CrossRef] [MathSciNet] [Google Scholar]
- C. Dellacherie and P.A. Meyer, Probabilités et Potentiel, Chapter V-VII. Hermann, Paris (1980). [Google Scholar]
- Ł. Delong, BSDEs with time-delayed generators of a moving average type with applications to pricing and utilities (2010). Preprint arXiv:1008.3722. [Google Scholar]
- Ł. Delong, Applications of time-delayed backward stochastic differential equations to pricing, hedging and management of insurance and financial risks (2011). Preprint arXiv:1005.4417v3. [Google Scholar]
- Ł. Delong and P. Imkeller, Backward stochastic differential equations with time delayed generator - Results and counterexamples. Ann. Appl. Probab. 20 (2010) 1512–1536. [CrossRef] [Google Scholar]
- Ł. Delong and P. Imkeller, On Malliavin’s differentiability of time delayed BSDEs driven by Brownian motions and Poisson random measures. Stoch. Process. Appl. 120 (2010) 1748–1775. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dos Reis, A. Reveillac and J. Zhang, FBSDE with time delayed generators − Lp solutions, differentiability, representation formulas and path regularity. Stoch. Process. Appl. 121 (2011) 2114–2150. [CrossRef] [Google Scholar]
- N. El-Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDE’s and related obstacle problems for PDE’s. Ann. Probab. 25 (1997) 702–737. [CrossRef] [MathSciNet] [Google Scholar]
- N. El Karoui, S. Peng and M.C. Quenez, Backward stochastic differential equations in finance. Math. Finance 7 (1997) 1–71. [CrossRef] [MathSciNet] [Google Scholar]
- S. Hamadène, Reflected BSDEs with discontinuous barrier and applications. Stoch. Stoch. Rep. 74 (2002) 571–596. [CrossRef] [MathSciNet] [Google Scholar]
- S. Hamadène, Mixed Zero-sum differential game and American game options. SIAM J. Control. Optim. (2006). [Google Scholar]
- S. Hamadène and J.-P. Lepeltier, Backward equations, stochastic control and zero-sum stochastic differential games. Stoch. Stoch. Rep. 54 221-231, 1995. [CrossRef] [Google Scholar]
- E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, edited by F. Clarke and R. Stern. Nonlin. Anal., Differ. Equ. Control. Kluwer Acad. Publi., Netherlands (1999) 503–549. [Google Scholar]
- E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14 (1990) 55–61. [CrossRef] [Google Scholar]
- E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic Partial Differential Equations and their Applications, Charlotte, NC (1991). In vol. 176 of Lect. Notes Control Inform. Sci. Springer, Berlin (1992) 200–217. [Google Scholar]
- Q. Zhou and Y. Ren, Reflected backward stochastic differential equations with time delayed generators. Stat. Probab. Lett. 82 (2012) 979–990. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.