Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 204 - 235
DOI https://doi.org/10.1051/ps/2014022
Published online 01 September 2015
  1. A. Antoniadis and T. Sapatinas, Wavelet shrinkage for natural exponential families with quadratic variance functions. Biometrika 88 (2001) 805–820. [CrossRef] [Google Scholar]
  2. A. Antoniadis, P. Besbeas and T. Sapatinas, Wavelet shrinkage for natural exponential families with cubic variance functions. Sankhyā. Indian J. Stat., Series A 63 (2001) 309–327. [Google Scholar]
  3. Y. Baraud, Estimator selection with respect to Hellinger-type risks. Probab. Theory Relat. Fields 151 (2011) 353–401. [CrossRef] [Google Scholar]
  4. Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat. Fields 143 (2009) 239–284. [CrossRef] [Google Scholar]
  5. Y. Baraud and L. Birgé, Estimating composite functions by model selection. Ann. Inst. Henri Poincaré, Probab. Stat. 50 (2014) 285–314. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.R. Barron and T.M. Cover, Minimum complexity density estimation. IEEE Trans. Inform. Theory 37 (1991) 1034–1054. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Birgé, Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. Henri Poincaré, Probab. Stat. 42 (2006) 273–325. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Birgé, Model selection for Poisson processes. In Asymptotics: particles, processes and inverse problems. In vol. 55 of IMS Lect. Notes Monogr. Ser. Inst. Math. Statist., Beachwood, OH (2007) 32–64. [Google Scholar]
  9. L. Birgé, Model selection for density estimation with L2-loss. Probab. Theory Relat. Fields (2013) 1–42. [Google Scholar]
  10. F. Comte, S. Gaïffas and A. Guilloux, Adaptive estimation of the conditional intensity of marker-dependent counting processes. Ann. Inst. Henri Poincaré, Probab. Stat. 47 (2011) 1171–1196. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Dahmen, R. DeVore and K. Scherer, Multi-dimensional spline approximation. SIAM J. Numer. Anal. 17 (1980) 380–402. [CrossRef] [Google Scholar]
  12. J.T. Duane, Learning curve approach to reliability monitoring. IEEE Trans. Aerospace 2 (1964) 563–566. [CrossRef] [Google Scholar]
  13. A.L. Goel and K. Okumoto, Time-dependent error-detection rate model for software reliability and other performance measures. IEEE Trans. Reliab. R-28 (1979) 206–211. [Google Scholar]
  14. A. Juditsky, O. Lepski and A. Tsybakov, Nonparametric estimation of composite functions. Ann. Stat. 37 (2009) 1360–1404. [CrossRef] [Google Scholar]
  15. K. Krishnamurthy, M. Raginsky and R. Willett, Multiscale photon-limited spectral image reconstruction. SIAM J. Imaging Sci. 3 (2010) 619–645. [CrossRef] [Google Scholar]
  16. P. Massart, Concentration inequalities and model selection. École d’été de Probabilités de Saint-Flour. In vol. 1896 of Lect. Notes Math. Springer, Berlin/Heidelberg (2003). [Google Scholar]
  17. P. Reynaud-Bouret, Adaptive estimation of the intensity of inhomogeneous poisson processes via concentration inequalities. Probab. Theory Relat. Fields 126 (2003) 103–153. [CrossRef] [Google Scholar]
  18. S. Yamada, O. Mitsuru and S. Osaki, S-shaped reliability growth modeling for software error detection. IEEE Trans. Reliab. 32 (1983) 475–484. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.