Free Access
Volume 19, 2015
Page(s) 236 - 250
Published online 01 September 2015
  1. H. Altendorf and D. Jeulin, Random-walk-based stochastic modeling of three-dimensional fiber systems. Phys. Rev. E 83 (2011) 041804. [CrossRef] [Google Scholar]
  2. B. Baumeier, O. Stenzel, C. Poelking, D. Andrienko and V. Schmidt, Stochastic modeling of molecular charge transport networks. Phys. Rev. B 86 (2012) 184202. [CrossRef] [Google Scholar]
  3. J. D. Bernal and J. Mason, Packing of spheres: co-ordination of randomly packed spheres. Nature 188 (1960) 910–911. [NASA ADS] [CrossRef] [Google Scholar]
  4. A. Bezrukov, M. Bargieł and D. Stoyan, Statistical analysis of simulated random packings of spheres. Particle & Particle Systems Characterization 19 (2002) 111–118. [CrossRef] [Google Scholar]
  5. S.N. Chiu, D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications. J. Wiley and Sons, Chichester, third edition (2013). [Google Scholar]
  6. E.G. Coffman, Jr., L. Flatto, P. Jelenković and B. Poonen, Packing random intervals on-line. Algorithmica 22 (1998) 448–476. [CrossRef] [Google Scholar]
  7. D.J. Cumberland and R.J. Crawford, The Packing of Particles. Elsevier, New York (1987). [Google Scholar]
  8. D.J. Daley and D.D. Vere-Jones, An Introduction to the Theory of Point Processes I/II. Springer, New York (2005/2008). [Google Scholar]
  9. J. W. Evans, Random and cooperative sequential adsorption. Rev. Modern Phys. 65 (1993) 1281. [CrossRef] [Google Scholar]
  10. P.J. Flory, Intramolecular reaction between neighboring substituents of vinyl polymers. J. Amer. Chem. Soc. 61 (1939) 1518–1521. [CrossRef] [Google Scholar]
  11. G. Gaiselmann, D. Froning, C. Tötzke, C. Quick, I. Manke, W. Lehnert and V. Schmidt, Stochastic 3D modeling of non-woven materials with wet-proofing agent. International J. Hydrogen Energy 38 (2013) 8448–8460. [CrossRef] [Google Scholar]
  12. J. J. Gonzalez, P. C. Hemmer and J. S. Høye. Cooperative effects in random sequential polymer reactions. Chem. Phys. 3 (1974) 228–238. [CrossRef] [Google Scholar]
  13. D. Illian, P. Penttinen, H. Stoyan and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns. J. Wiley and Sons, Chichester (2008). [Google Scholar]
  14. J. Mościński, M. Bargieł, Z. Rycerz and P. Jacobs, The force-biased algorithm for the irregular close packing of equal hard spheres. Molecular Simulation 3 (1989) 201–212. [CrossRef] [Google Scholar]
  15. M.D. Penrose, Limit theorems for monolayer ballistic deposition in the continuum. J. Stat. Phys. 105 (2001) 561–583. [CrossRef] [Google Scholar]
  16. M.D. Penrose, Random Geometric Graphs. Oxford University Press, Oxford (2003). [Google Scholar]
  17. M.D. Penrose, Existence and spatial limit theorems for lattice and continuum particle systems. Probab. Surveys 5 (2008) 1–36. [CrossRef] [Google Scholar]
  18. M.D. Penrose and J.E. Yukich, Limit theory for random sequential packing and deposition. Ann. Appl. Probab. 12 (2002) 272–301. [CrossRef] [MathSciNet] [Google Scholar]
  19. V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier and D. Andrienko, Microscopic simulations of charge transport in disordered organic semiconductors. J. Chem. Theory Comput. 7 (2011) 3335–3345. [CrossRef] [PubMed] [Google Scholar]
  20. G. Scott, Packing of spheres: packing of equal spheres. Nature 188 (1960) 908–909. [NASA ADS] [CrossRef] [Google Scholar]
  21. D. Stoyan, Simulation and characterization of random systems of hard particles. Image Anal. Stereol. 21 (2002) S41–S48. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.