Free Access
Volume 19, 2015
Page(s) 251 - 267
Published online 06 October 2015
  1. D. Applebaum, Universal Malliavin calculus in Fock and Lévy-Itô Spaces. Commun. Stoch. Anal. (2009) 119–141. [Google Scholar]
  2. J.-M. Azais and J.-C. Fort, Remark on the finite-dimensional character of certain results of functional statistics. C.R. Acad. Sci. 351 (2013) 139–141. [CrossRef] [Google Scholar]
  3. G. Biau, F. Cérou and A. Guyader, Rates of convergence of the functional k-nearest neighbor estimate. IEEE Trans. Inf. Theory 56 (2010) 2034–2040. [Google Scholar]
  4. G. Biau, B. Cadre and Q. Paris, Cox process functional learning. To appear in Stat. Int. Stoch. Processes (2015). [Google Scholar]
  5. A. Baìllo, J. Cuesta-Alberto and A. Cuevas, Supervised classification for a family of Gaussian functional models. Scand. J. Statist. 38 (2011) 480–498. [Google Scholar]
  6. B. Cadre, Supervised classification of diffusion paths. Math. Methods Statist. 22 (2013) 213–225. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Gyor¨fi, M. Kohler, A. Krzyżak and H. Walk, A distribution-Free Theory of Nonparametric Regression. Springer-Verlag, New-York (2002). [Google Scholar]
  8. K. Itô, Spectral type of the shift transformation of differential processes with stationary increments. Trans. Amer. Math. Soc. 81 (1956) 253–263. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.F.C. Kingman, Poisson Processes. In Oxf. Stud. Probab. Oxford Science publications, 1st ed. (1993). [Google Scholar]
  10. G. Last and M.D. Penrose, Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Relat. Fields 150 (2011) 663–690. [CrossRef] [Google Scholar]
  11. J. Mecke, Stationaire zufällige Maβe auf lokalkompakten abelschen Gruppen. Z. Wahrsch. verw. Geb. 9 (1967) 36–58. [CrossRef] [Google Scholar]
  12. D. Nualart and J. Vives, Anticipative calculus for the Poisson process based on the Fock space. Séminaire de Probabilités XXIV. Lect. Notes Math. (1990) 154–165. [Google Scholar]
  13. J.O. Ramsay and B.W. Silverman, Functional Data Analysis. Springer-Verlag, New-York (1997). [Google Scholar]
  14. B.W. Silverman, Density Estimation for Statistics and Data Analysis. Springer-Verlag, New-York (1986). [Google Scholar]
  15. N. Wiener, The homogeneous chaos. Am. J. Math. 60 (1938) 897–936. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.