Free Access
Issue
ESAIM: PS
Volume 19, 2015
Page(s) 172 - 193
DOI https://doi.org/10.1051/ps/2014019
Published online 19 August 2015
  1. D. Aldous, The continuum random tree I. Ann. Probab. 19 (1991) 1–28. [Google Scholar]
  2. W.J. Anderson, Continuous-Time Markov Chains. Springer, New York, MR1118840 (1991). [Google Scholar]
  3. M. Ba, and E. Pardoux, The effect of competition on the height and length of the forest of genealogical trees of a large population, in Malliavin Calculus and Related Topics, a Festschrift in Honor of David Nualart. Springer Proc. Math. Statis. 34 (2012) 445–467. [CrossRef] [Google Scholar]
  4. M. Ba and E. Pardoux, Branching processes with interaction and generalized Ray Knight theorem. To appear in Ann. Inst. Henri Poincaré Probab. Statist. (2015). [Google Scholar]
  5. B.G. Bhaskaran, Almost sure comparison of birth and death processes with application to M/M/s queueing systems. Queueing Systems 1 (1986) 103–127. [CrossRef] [Google Scholar]
  6. P. Cattiaux, P. Collet, A. Lambert, S. Martinez, S. Méléard and J. San Martin, Quasi-stationary distributions and diffusion models in population dynamics. Ann. Probab. 37 (2009) 1926–1969. [CrossRef] [Google Scholar]
  7. D.A. Dawson and Z. Li, Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012) 813–857. [CrossRef] [Google Scholar]
  8. O. Kallenberg, Foundations of Modern Probability. Springer, New York (1997). [Google Scholar]
  9. S. Karlin and H.M. Taylor, A First Course in Stochastic Processes, 2nd ed. Academic Press, New york (1975). [Google Scholar]
  10. V. Le, E. Pardoux and A. Wakolbinger, Trees under attack: a Ray Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Rel. Fields 155 (2013) 583–619. [Google Scholar]
  11. E. Pardoux, Markov processes and applications. Wiley Series in Probability and Statistics. John Wiley and Sons, Ltd., Chichester, Dunod, Paris (2008). [Google Scholar]
  12. E. Pardoux and A. Wakolbinger, From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth. Elec. Comm. Probab. 16 (2011) 720–731. [CrossRef] [Google Scholar]
  13. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion. Springer, New York (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.