Free Access
Issue |
ESAIM: PS
Volume 19, 2015
|
|
---|---|---|
Page(s) | 148 - 171 | |
DOI | https://doi.org/10.1051/ps/2014018 | |
Published online | 19 August 2015 |
- M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition. Dover Publications Inc., New York (1992). [Google Scholar]
- F. Aurzada and T. Simon, Persistence probabilities and exponents. Preprint arXiv:1203.6554 (2012). [Google Scholar]
- J. Bertoin, Reflecting a Langevin process at an absorbing boundary. Ann. Probab. 35 (2007) 2021–2037. [CrossRef] [Google Scholar]
- M. Bossy and J.-F. Jabir, On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. Stoch. Process. Appl. 121 (2011) 2751–2775. [CrossRef] [Google Scholar]
- P. Debs, Penalisation of the standard random walk by a function of the one-sided maximum, of the local time, or of the duration of the excursions, in Séminaire de probabilités XLII. Vol. 1979, Lect. Notes Math. Springer, Berlin (2009) 331–363. [Google Scholar]
- A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of integral transforms. McGraw-Hill Book Company, Inc., New York-Toronto-London (1954), Vol. I. Based, in part, on notes left by Harry Bateman. [Google Scholar]
- W. Feller, An introduction to probability theory and its applications. Second edition. John Wiley & Sons Inc., New York (1971), Vol. II. [Google Scholar]
- P. Groeneboom, G. Jongbloed and J.A. Wellner, Integrated Brownian motion, conditioned to be positive. Ann. Probab. 27 (1999) 1283–1303. [CrossRef] [Google Scholar]
- M. Goldman, On the first passage of the integrated Wiener process. Ann. Mat. Statist. 42 (1971) 2150–2155. [CrossRef] [MathSciNet] [Google Scholar]
- E. Jacob, Processus de Langevin réfléchis au second ordre. Ph.D. thesis, Université Pierre et Marie Curie, Paris VI (2010). [Google Scholar]
- Y. Isozaki and S. Kotani, Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion. In Séminaire de Probabilités, XXXIV. Vol. 1729 of Lect. Notes Math. Springer, Berlin (2000) 374–387. [Google Scholar]
- I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, 2nd edition. Vol. 113 of Grad. Texts Math. Springer-Verlag, New York (1991). [Google Scholar]
- D. Khoshnevisan and Z. Shi, Chung’s law for integrated Brownian motion. Trans. Amer. Math. Soc. 350 (1998) 4253–4264. [CrossRef] [MathSciNet] [Google Scholar]
- A. Lachal, Sur l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 461–464. [Google Scholar]
- A. Lachal, Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré Probab. Statist. 27 (1991) 385–405. [Google Scholar]
- A. Lachal, Sur les excursions de l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 1053–1056. [Google Scholar]
- A. Lachal, Dernier instant de passage pour l’intégrale du mouvement brownien. Stochastic Process. Appl. 49 (1994) 57–64. [CrossRef] [MathSciNet] [Google Scholar]
- A. Lachal, Sur les temps de passages successifs de l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 903–908. [Google Scholar]
- A. Lachal, Les temps de passage successifs de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré Probab. Statist. 33 (1997) 1–36. [CrossRef] [Google Scholar]
- A. Lachal, Application de la théorie des excursions à l’intégrale du mouvement brownien. In Séminaire de Probabilités XXXVII. Vol. 1832 of Lect. Notes Math. Springer, Berlin (2003) 109–195. [Google Scholar]
- H.P. McKean, Jr. A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227–235. [MathSciNet] [Google Scholar]
- R. Mansuy and M. Yor, Random times and enlargements of filtrations in a Brownian setting. Vol. 1873 of Lect. Notes Math. Springer-Verlag, Berlin (2006). [Google Scholar]
- J. Najnudel, B. Roynette and M. Yor, A global view of Brownian penalisations. Vol. 19 of MSJ Memoirs. Mathematical Society of Japan, Tokyo (2009). [Google Scholar]
- C. Profeta, Penalizing null recurrent diffusions. Electron. J. Probab. 17 (2012) 23. [CrossRef] [MathSciNet] [Google Scholar]
- B. Roynette, P. Vallois and M. Yor, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time II. Studia Sci. Math. Hungar. 43 (2006) 295–360. [CrossRef] [MathSciNet] [Google Scholar]
- B. Roynette, P. Vallois and M. Yor, Some penalisations of the Wiener measure. Jpn. J. Math. 1 (2006) 263–290. [CrossRef] [MathSciNet] [Google Scholar]
- B. Roynette and M. Yor, Penalising Brownian paths. Vol. 1969 of Lect. Notes Math. Springer-Verlag, Berlin (2009). [Google Scholar]
- P. Salminen and P. Vallois, On subexponentiality of the Lévy measure of the diffusion inverse local time; with applications to penalizations. Electron. J. Probab. 14 (2009) 1963–1991. [CrossRef] [MathSciNet] [Google Scholar]
- J. Touboul and O. Faugeras, A characterization of the first hitting time of double integral processes to curved boundaries. Adv. Appl. Probab. 40 (2008) 501–528. [CrossRef] [Google Scholar]
- K. Yano, Y. Yano and M. Yor, Penalisation of a stable Lévy process involving its one-sided supremum. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1042–1054. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.