Free Access
Volume 19, 2015
Page(s) 135 - 147
Published online 17 August 2015
  1. I.T. Dimov, Monte Carlo methods for applied scientists. World Scientific Publishing Co. Pte, Ltd Singapore (2008). [Google Scholar]
  2. G.S. Fishman, Monte-Carlo Concepts Algorithms and Applications. Springer-Verlag, Berlin (1997). [Google Scholar]
  3. M. Grigoriu, A spectral-based Monte Carlo algorithm for generating samples of nonstationary Gaussian processes. Monte Carlo Methods Appl. 16 (2010) 143–165. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Keller, S. Heinrich and H. Niederreiter, Monte Carlo and Quasi Monte Carlo Methods 2008. Springer (2008). [Google Scholar]
  5. E.L. Lehmann, Some concepts of dependence. Ann. Math. Statist. 35 (1966) 1137–1153. [CrossRef] [Google Scholar]
  6. W.L. Loh, On Latin hypercube sampling. Ann. Statist. 24 (1996) 2058–2080. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.D. MacKay, R.J. Beckman and W.J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (1979) 239-245. [Google Scholar]
  8. H. Niederreiter, Random number generation and quasi monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia (1992). [Google Scholar]
  9. M. Ourbih-Tari and A. Aloui, Sampling methods and parallelism into Monte Carlo simulation. J. Statist. Adv. Theory Appl. 1 (2009) 169–192. [Google Scholar]
  10. M. Ourbih-Tari, A. Aloui and A. Alioui, A software component which generates regular numbers from refined descriptive sampling, in Proc. of the European Simulation Modelling conference, edited by Marwan Al-Akaidi. Leicester United Kingdom (2009) 23–25. [Google Scholar]
  11. M. Pidd, Computer simulation in management science, 5 edn. John Wiley and Sons (2004). [Google Scholar]
  12. J.S. Ramberg and B.W. Schmeiser, An Approximate Method for generating Symmetric Random Variables. Communications of the ACM 15 (1972) 987–990. [CrossRef] [Google Scholar]
  13. E. Saliby, Descriptive Sampling A better approach to Monte Carlo simulation. J. Oper. Res. Soc. 41 (1990) 1133–1142. [CrossRef] [Google Scholar]
  14. T.L. Schmitz and H.S. Kim, Monte Carlo evaluation of periodic error uncertainty. Precision Engrg. 31 (2007) 251-259. [CrossRef] [Google Scholar]
  15. I.M. Sobol, A primer for the Monte Carlo method. CRS Press (1994). [Google Scholar]
  16. M. Tari and A. Dahmani, Flowshop simulator using different sampling methods. Oper. Res. Inter. J. 5 (2005) 261–272. [CrossRef] [Google Scholar]
  17. M. Tari and A. Dahmani, The three phase discrete event simulation using some sampling methods. Int. J. Appl. Math. Statist. 3 (2005) 37–48. [Google Scholar]
  18. M. Tari and A. Dahmani, Refined Descriptive Sampling A better approach to Monte Carlo simulation. Simul. Model. Pract. Theory 14 (2006) 143–160. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.