Free Access
Volume 19, 2015
Page(s) 115 - 134
Published online 24 June 2015
  1. F. Abramovich, Y. Benjamini, D.L. Donoho and I.M. Johnstone, Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34 (2006) 559–1047. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Arias-Castro, E.J. Candès and A. Durand, Detection of an anomalous clusters in a network. Ann. Statist. 39 (2011) 278–304. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Arias-Castro, E.J. Candès and Y. Plan, Global Testing and Sparse Alternatives: ANOVA, Multiple Comparisons and the Higher Criticism. Preprint arXiv:1007.1434 (2010). [Google Scholar]
  4. E. Arias-Castro, D.L. Donoho and X. Huo, Near-optimal detection of geometric objects by fast multiscale methods. IEEE Trans. Inform. Theory 51 (2005) 2402–2425. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Arias-Castro and K. Lounici, Variable selection with exponential weights and 0-penalization. Preprint arxiv:1208.2635 (2012). [Google Scholar]
  6. Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 (1995) 289–3300. [Google Scholar]
  7. K. Bertin and G. Lecué, Selection of variables and dimension reduction in high-dimensional non-parametric regression. Electron. J. Stat. 2 (2008) 1224–1241. [CrossRef] [Google Scholar]
  8. P.J. Bickel, Y. Ritov and A.B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 (2009) 1705–1732. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Butucea and Yu.I. Ingster, Detection of a sparse submatrix of a high-dimensional noisy matrix. Bernoulli 19 (2013) 2652–2688. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Butucea and G. Gayraud, Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations. Preprint arxiv:1301.4660 (2013). [Google Scholar]
  11. T. Cai, J. Jin and M. Low, Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 (2007) 2421–2449. [CrossRef] [MathSciNet] [Google Scholar]
  12. E.J. Candès and Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans. Inform. Theory. 57 (2011) 2342–2359 [CrossRef] [MathSciNet] [Google Scholar]
  13. E.J. Candès and B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9 (2009) 717–772. [Google Scholar]
  14. L. Comminges and A.S. Dalalyan, Tight conditions for consistency of variable selection in the context of high dimensionality. Ann. Statist. 40 (2012) 2359–2763. [CrossRef] [MathSciNet] [Google Scholar]
  15. D.L. Donoho and J. Jin, Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 (2004) 962–994. [CrossRef] [MathSciNet] [Google Scholar]
  16. D.L. Donoho, I.M. Johnstone, C. Hoch and A. Stern, Maximum entropy and the nearly black object. With Discussion. J. Roy. Statist. Soc., Ser. B. 54 (1992) 4181. [Google Scholar]
  17. P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling extremal events: for insurance and finance.Springer (1997). [Google Scholar]
  18. D. Gross, Recovering low-rank matrices from few coefficients in any basis IEEE, Information theory 57 (2010) 1548–1566. [Google Scholar]
  19. Yu.I. Ingster, Some problems of hypothesis testing leading to infinitely divisible distributions. Math. Methods Stat. 6 (1997) 47–69. [Google Scholar]
  20. Yu.I. Ingster and N.A. Stepanova, Adaptive selection of sparse regression function components. Zapiski Nauchn. Sem. POMI ZAI (2012). [Google Scholar]
  21. Yu.I. Ingster and I.A. Suslina, Nonparametric goodness-of-fit testing under gaussian models. Vol. 169 of Lect. Notes in Statist. Springer-Verlag, New York (2003). [Google Scholar]
  22. Yu.I. Ingster and I.A. Suslina, On a detection of a signal of known shape in multichannel system. Zapiski Nauchn. Sem. POMI 294 (2002) 88–112, Transl. J. Math. Sci. 127 (2002) 1723–1736. [Google Scholar]
  23. R.H. Keshavan, A. Montanari and S. Oh, Matrix completion from noisy entries. J. Mach. Learn. Res. 11 (2010) 2057–2078. [Google Scholar]
  24. M. Kolar, S. Balakrishnan, A. Rinaldo and A. Singh, Minimax localization of structural information in large noisy matrices. NIPS (2011). [Google Scholar]
  25. V. Koltchinskii, K. Lounici and A.B. Tsybakov, Nuclear norm penalization and optimal rates for noisy low rank matrix completion. Ann. Statist. 39 (2011) 2302–2329. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Lafferty and L. Wasserman, Rodeo: sparse, greedy nonparametric regression. Ann. Statist. 36 (2008) 28–63. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. Recht, A simpler approach to matrix completion. J. Machine Learning 12 (2011) 3413–3430. [Google Scholar]
  28. A. Rohde and A.B. Tsybakov, Estimation of high-dimensional low-rank matrices, Ann. Statist. 39 (2011) 887–930. [CrossRef] [MathSciNet] [Google Scholar]
  29. X. Sun and A.B. Nobel, On the maximal size of Large-Average and ANOVA-fit Submatrices in a Gaussian Random Matrix. Bernoulli 19 (2013) 275–294. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.A. Shabalin, V.J. Weigman, C.M. Perou and A.B. Nobel, Finding Large Average Submatrices in High Dimensional Data. Ann. Appl. Statist. 3 (2009) 985–1012. [CrossRef] [Google Scholar]
  31. A.B. Tsybakov, Introduction to nonparametric statistics. Springer Ser. Stat. Springer, New-York (2009). [Google Scholar]
  32. N. Verzelen, Minimax risks for sparse regressions: Ultra-high dimensional phenomenons. Electron. J. Stat. 6 (2012) 3890. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.