Free Access
Volume 17, 2013
Page(s) 725 - 739
Published online 04 November 2013
  1. M. Costeniuc, R.S. Ellis and P. Tak-Hun Otto, Multiple critical behavior of probabilistic limit theorems in the neighborhood of a tricritical point. J. Stat. Phys. 127 (2007) 495–552. [CrossRef] [Google Scholar]
  2. M. Costeniuc, R.S. Ellis and H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie–Weiss–Potts model. J. Math. Phys. 46 (2005) 063301. [CrossRef] [Google Scholar]
  3. A. Dembo and O. Zeitouni, Large deviations techniques and applications Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin 38 (2010). Corrected reprint of the second edition (1998). [Google Scholar]
  4. I.H. Dinwoodie and S.L. Zabell, Large deviations for exchangeable random vectors. Ann. Probab. 20 (1992) 1147–1166. [CrossRef] [Google Scholar]
  5. C. Dombry and N. Guillotin-Plantard, The Curie–Weiss model with dynamical external field. Markov Process. Related Fields 15 (2009) 1–30. [MathSciNet] [Google Scholar]
  6. P. Dupuis and R.S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations. Probab. Stat. John Wiley & Sons Inc., New York (1997). A Wiley-Interscience Publication. [Google Scholar]
  7. P. Eichelsbacher and M. Löwe, Moderate deviations for a class of mean-field models. Markov Process. Related Fields 10 (2004) 345–366. [MathSciNet] [Google Scholar]
  8. R.S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York 271 (1985). [Google Scholar]
  9. R.S. Ellis and C.M. Newman, Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44 (1978) 117–139. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.S. Ellis, C.M. Newman and J.S. Rosen, Limit theorems for sums of dependent random variables occurring in statistical mechanics II. Conditioning, multiple phases, and metastability. Z. Wahrsch. Verw. Gebiete 51 (1980) 153–169. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Formentin, C. Külske and A. Reichenbachs, Metastates in mean-field models with random external fields generated by Markov chains. J. Stat. Phys. 146 (2012) 314–329. [CrossRef] [Google Scholar]
  12. N. Guillotin-Plantard and R. Schott, Dynamic random walks. Theory and applications. Elsevier B. V., Amsterdam (2006). [Google Scholar]
  13. M. Löwe and R. Meiners, Moderate Deviations for Random Field Curie–Weiss Models. J. Stat. Phys. 149 (2012) 701–721. [CrossRef] [Google Scholar]
  14. K. Petersen, Ergodic Theory, vol. 2 of Adv. Math. Cambridge University Press, Cambridge (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.