Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 698 - 724
DOI https://doi.org/10.1051/ps/2012018
Published online 04 November 2013
  1. J.-P. Baudry, C. Maugis and B. Michel, Slope heuristics: overview and implementation. Stat. Comput. 22 (2011) 455–470. [CrossRef] [Google Scholar]
  2. L. Birgé, A new lower bound for multiple hypothesis testing. IEEE Trans. Inform. Theory. 51 (2005) 1611–1615. [CrossRef] [MathSciNet] [Google Scholar]
  3. W. Cheney and W. Light, A course in approximation theory, Graduate Studies in Mathematics, vol. 101 of Amer. Math. Soc. Providence, RI (2009). [Google Scholar]
  4. S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Posterior consistency of Dirichlet mixtures in density estimation. Ann. Stat. 27 (1999) 143–158. [CrossRef] [Google Scholar]
  5. S. Ghosal and A. van der Vaart, Entropy and rates of convergence for maximum likelihood and Bayes estimation for mixtures of normal densities. Ann. Stat. 29 (2001) 1233–1263,. [CrossRef] [Google Scholar]
  6. S. Ghosal and A. van der Vaart, Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Stat. 35 (2007) 697–723. [CrossRef] [Google Scholar]
  7. U. Grenander, Abstract inference. John Wiley and Sons Inc., New York (1981). [Google Scholar]
  8. T. Hangelbroek and A. Ron, Nonlinear approximation using Gaussian kernels. J. Functional Anal. 259 (2010) 203–219. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.A. Hartigan, Clustering algorithms, Probab. Math. Stat. John Wiley and Sons, New York-London-Sydney (1975). [Google Scholar]
  10. T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning, Data mining, inference, and prediction. Statistics. Springer, New York, 2nd edition (2009). [Google Scholar]
  11. W. Kruijer, J. Rousseau and A van der Vaart, Adaptive Bayesian Density Estimation with Location-Scale Mixtures. Electron. J. Statist. 4 (2010) 1225–1257. [CrossRef] [Google Scholar]
  12. B. Lindsay, Mixtures Models: Theory, Geometry and Applications. IMS, Hayward, CA (1995). [Google Scholar]
  13. P. Massart, Concentration Inequalities and Model Selection. École d’été de Probabilités de Saint-Flour, 2003. Lect. Notes Math. Springer (2007). [Google Scholar]
  14. C. Maugis and B. Michel, Adaptive density estimation for clustering with Gaussian mixtures (2011). arXiv:1103.4253v2. [Google Scholar]
  15. C. Maugis and B. Michel, Data-driven penalty calibration: a case study for Gaussian mixture model selection. ESAIM: PS 15 (2011) 320–339. [CrossRef] [EDP Sciences] [Google Scholar]
  16. C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: PS 15 (2011) 41–68. [CrossRef] [EDP Sciences] [Google Scholar]
  17. G. McLachlan and D. Peel, Finite Mixture Models. Wiley (2000). [Google Scholar]
  18. A.B. Tsybakov, Introduction to nonparametric estimation. Statistics. Springer, New York (2009). [Google Scholar]
  19. J. Wolfowitz, Minimax estimation of the mean of a normal distribution with known variance. Ann. Math. Stat. 21 (1950) 218–230. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.