Free Access
Volume 17, 2013
Page(s) 672 - 697
Published online 04 November 2013
  1. N. Akakpo, Adaptation to anisotropy and inhomogeneity via dyadic piecewise polynomial selection. Math. Meth. Stat. 21 (2012) 1–28. [CrossRef] [Google Scholar]
  2. N. Akakpo and C. Lacour, Inhomogeneous and anisotropic conditional density estimation from dependent data. Electon. J. Statist. 5 (2011) 1618–1653. [CrossRef] [Google Scholar]
  3. A. Antoniadis, J. Bigot and R. von Sachs, A multiscale approach for statistical characterization of functional images. J. Comput. Graph. Stat. 18 (2008) 216–237. [Google Scholar]
  4. A. Barron, C. Huang, J. Li and X. Luo, MDL Principle, Penalized Likelihood, and Statistical Risk, in Festschrift in Honor of Jorma Rissanen on the Occasion of his 75th Birthday. Tampere University Press (2008). [Google Scholar]
  5. D. Bashtannyk and R. Hyndman, Bandwidth selection for kernel conditional density estimation. Comput. Stat. Data Anal. 36 (2001) 279–298. [CrossRef] [Google Scholar]
  6. L. Bertrand, M.-A. Languille, S.X. Cohen, L. Robinet, C. Gervais, S. Leroy, D. Bernard, E. Le Pennec, W. Josse, J. Doucet and S. Schöder, European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials. J. Synchrotron Radiat. 18 (2011) 765–772. [CrossRef] [PubMed] [Google Scholar]
  7. Ch. Biernacki, G. Celeux, G. Govaert and F. Langrognet, Model-based cluster and discriminant analysis with the MIXMOD software. Comput. Stat. Data Anal. 51 (2006) 587–600. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Birgé and P. Massart, Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998) 329–375. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Birgé and P. Massart, Minimal penalties for gaussian model selection. Probab. Theory Related Fields 138 (2007) 33–73. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Blanchard, C. Schäfer, Y. Rozenholc and K.R. Müller, Optimal dyadic decision trees. Mach. Learn. 66 (2007) 209–241. [CrossRef] [Google Scholar]
  11. E. Brunel, F. Comte and C. Lacour, Adaptive estimation of the conditional density in presence of censoring. Sankhy 69 (2007) 734–763. [Google Scholar]
  12. S.X. Cohen and E. Le Pennec, Conditional density estimation by penalized likelihood model selection and applications. Technical report, RR-7596. INRIA (2011). arXiv:1103.2021. [Google Scholar]
  13. S.X. Cohen and E. Le Pennec, Conditional density estimation by penalized likelihood model selection. Submitted (2012). [Google Scholar]
  14. S.X. Cohen and E. Le Pennec, Unsupervised segmentation of hyperspectral images with spatialized Gaussian mixture model and model selection. Submitted (2012). [Google Scholar]
  15. J. de Gooijer and D. Zerom, On conditional density estimation. Stat. Neerlandica 57 (2003) 159–176. [CrossRef] [Google Scholar]
  16. D. Donoho, CART and best-ortho-basis: a connection. Ann. Stat. 25 (1997) 1870–1911. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Efromovich, Conditional density estimation in a regression setting. Ann. Stat. 35 (2007) 2504–2535. [CrossRef] [Google Scholar]
  18. S. Efromovich, Oracle inequality for conditional density estimation and an actuarial example. Ann. Inst. Stat. Math. 62 (2010) 249–275. [CrossRef] [Google Scholar]
  19. J. Fan, Q. Yao and H. Tong, Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems. Biometrika 83 (1996) 189–206. [CrossRef] [Google Scholar]
  20. Ch. Genovese and L. Wasserman, Rates of convergence for the Gaussian mixture sieve. Ann. Stat. 28 (2000) 1105–1127. [CrossRef] [Google Scholar]
  21. L. Györfi and M. Kohler, Nonparametric estimation of conditional distributions. IEEE Trans. Inform. Theory 53 (2007) 1872–1879. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Hall, R. Wolff and Q. Yao, Methods for estimating a conditional distribution function. J. Amer. Stat. Assoc. 94 (1999) 154–163. [CrossRef] [Google Scholar]
  23. T. Hofmann, Probabilistic latent semantic analysis, in Proc. of Uncertainty in Artificial Intelligence (1999). [Google Scholar]
  24. Y. Huang, I. Pollak, M. Do and C. Bouman, Fast search for best representations in multitree dictionaries. IEEE Trans. Image Process. 15 (2006) 1779–1793. [CrossRef] [PubMed] [Google Scholar]
  25. R. Hyndman and Q. Yao, Nonparametric estimation and symmetry tests for conditional density functions. J. Nonparam. Stat. 14 (2002) 259–278. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Hyndman, D. Bashtannyk and G. Grunwald, Estimating and visualizing conditional densities. J. Comput. Graphical Stat. 5 (1996) 315–336. [Google Scholar]
  27. B. Karaivanov and P. Petrushev, Nonlinear piecewise polynomial approximation beyond besov spaces. Appl. Comput. Harmonic Anal. 15 (2003) 177–223. [CrossRef] [MathSciNet] [Google Scholar]
  28. E. Kolaczyk and R. Nowak, Multiscale generalised linear models for nonparametric function estimation. Biometrika 92 (2005) 119–133. [CrossRef] [Google Scholar]
  29. E. Kolaczyk, J. Ju and S. Gopal, Multiscale, multigranular statistical image segmentation. J. Amer. Stat. Assoc. 100 (2005) 1358–1369. [CrossRef] [MathSciNet] [Google Scholar]
  30. Q. Li and J. Racine, Nonparametric Econometrics: Theory and Practice. Princeton University Press (2007). [Google Scholar]
  31. J. Lin, Divergence measures based on the Shannon entropy. IEEE Trans. Inform. Theory 37 (1991) 145–151. [CrossRef] [Google Scholar]
  32. P. Massart, Concentration inequalities and model selection, vol. 1896 of Lecture Notes in Mathematics (2007). Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour (2003), With a foreword by Jean Picard. [Google Scholar]
  33. C. Maugis and B. Michel, A non asymptotic penalized criterion for Gaussian mixture model selection. ESAIM: PS 15 (2012) 41–68. [CrossRef] [EDP Sciences] [Google Scholar]
  34. C. Maugis and B. Michel, Data-driven penalty calibration: a case study for Gaussian mixture model selection. ESAIM: PS 15 (2012) 320–339. [CrossRef] [EDP Sciences] [Google Scholar]
  35. M. Rosenblatt, Conditional probability density and regression estimators, in Multivariate Analysis II, Proc. of Second Internat. Sympos., Dayton, Ohio, 1968. Academic Press (1969) 25–31. [Google Scholar]
  36. L. Si and R. Jin, Adjusting mixture weights of gaussian mixture model via regularized probabilistic latent semantic analysis, in Advances in Knowledge Discovery and Data Mining (2005) 218–252. [Google Scholar]
  37. Ch. Stone, The use of polynomial splines and their tensor products in multivariate function estimation. Ann. Stat. 22 (1994) 118–171. [CrossRef] [Google Scholar]
  38. S. Szarek, Metric entropy of homogeneous spaces, in Quantum Probability (Gdansk 1997) (1998) 395–410. [Google Scholar]
  39. S. van de Geer, The method of sieves and minimum contrast estimators. Math. Methods Stat. 4 (1995) 20–38. [Google Scholar]
  40. A. van der Vaart and J. Wellner, Weak Convergence. Springer (1996). [Google Scholar]
  41. I. van Keilegom and N. Veraverbeke, Density and hazard estimation in censored regression models. Bernoulli 8 (2002) 607–625. [MathSciNet] [Google Scholar]
  42. R. Willett and R. Nowak, Multiscale poisson intensity and density estimation. IEEE Trans. Inform. Theory 53 (2007) 3171–3187. [CrossRef] [MathSciNet] [Google Scholar]
  43. D. Young and D. Hunter, Mixtures of regressions with predictor-dependent mixing proportions. Comput. Stat. Data Anal. 54 (2010) 2253–2266. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.