Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 224 - 235
DOI https://doi.org/10.1051/ps/2011143
Published online 08 February 2013
  1. I.G. Abrahamson, Exact Bahadur efficiences for they Kolmogorov–Smirnov and Kiefer one- and two-sample statistics. Ann. Math. Stat. 38 (1967) 1475–1490. [CrossRef] [Google Scholar]
  2. T.W. Anderson and D.A. Darling, Asymptotic theory of certain ‘goodness of fit’ criteria based on stochastic processes. Ann. Math. Stat. 23 (1952) 193–212. [CrossRef] [Google Scholar]
  3. R.R. Bahadur, Stochastic comparison of tests. Ann. Math. Stat. 31 (1960) 276–295. [CrossRef] [Google Scholar]
  4. R.R. Bahadur, An optimal property of the likelihood ratio statistic, Proc. of the 5th Berkeley Symposium 1 (1966) 13–26. [Google Scholar]
  5. R.R. Bahadur, Rates of convergence of estimates and test statistics. Ann. Math. Stat. 38 (1967) 303–324. [CrossRef] [Google Scholar]
  6. L.D. Brown, Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann. Math. Stat. 42 (1971) 1206–1240. [CrossRef] [Google Scholar]
  7. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 (1952) 493–507. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Courant and D. Hilbert, Methods of Mathematical Physics I. Wiley, New York (1989). [Google Scholar]
  9. A.B. Hoadley, The theory of large deviations with statistical applictions. University of Califonia, Berkeley, Unpublished dissertation (1965). [Google Scholar]
  10. A.B. Hoadley, On the probability of large deviations of functions of several empirical cumulative distribution functions. Ann. Math. Stat. 38 (1967) 360–382. [CrossRef] [Google Scholar]
  11. J.L. Hodges and E.L. Lehmann, The efficiency of some nonparametric competitors of the t-test. Ann. Math. Stat. 27 (1956) 324–335. [CrossRef] [Google Scholar]
  12. M. Kac, J. Kiefer and J. Wolfowitz, On tests of normality and other tests of goodness of fit based on distance methods. Ann. Math. Stat. 26 (1955) 189–11. [CrossRef] [Google Scholar]
  13. W.C.M. Kallenberg and A.J. Koning, On Wieand’s theorem. Stat. Probab. Lett. 25 (1995) 121–132. [CrossRef] [Google Scholar]
  14. W.C.M. Kallenberg and T. Ledwina, On local and nonlocal measures of efficiency. Ann. Stat. 15 (1987) 1401–1420. [CrossRef] [Google Scholar]
  15. A.N. Kolmogorov, Confidence limits for an unknown distribution function. Ann. Math. Stat. 12 (1941) 461–463. [CrossRef] [Google Scholar]
  16. V.V. Litvinova and Y. Nikitin, Asymptotic efficiency and local optimality of tests based on two-sample U- and V-statistics. J. Math. Sci. 152 (2008) 921–927. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Nikitin, Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, New York (1995). [Google Scholar]
  18. E.S. Pearson and H.O Hartley, Biometrika Tables for Statisticians II. Cambridge University Press, New York (1972). [Google Scholar]
  19. J. Sethuraman, On the probability of large deviations of families of sample means. Ann. Math. Stat. 35 (1964) 1304–1316. [CrossRef] [Google Scholar]
  20. J. Sethuraman, On the probability of large deviations of the mean for random variables in D [ 0,1 ] . Ann. Math. Stat. 36 (1965) 280–285. [CrossRef] [Google Scholar]
  21. M.A. Stephens, The goodness-of-fit statistic VN: distribution and significance points. Biometrika 52 (1965) 309–321. [Google Scholar]
  22. H.S. Wieand, A condition under which the Pitman and Bahadur approaches to efficiency coincide. Ann. Stat. 4 (1976) 1003–1011. [CrossRef] [Google Scholar]
  23. C.S. Withers and S. Nadarajah, Power of a class of goodness-of-fit test I. ESAIM : PS 13 (2009) 283–300. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.