Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 219 - 223
DOI https://doi.org/10.1051/ps/2011157
Published online 08 February 2013
  1. B. Bekka, P. De la Harpe and A. Valette, Kazhdan’s property (T). Cambridge University Press (2008). [Google Scholar]
  2. A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19–90. [Google Scholar]
  3. A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39 (1998) 337–345. [Google Scholar]
  4. N. Chentsov, Lévy’s Brownian motion of several parameters and generalized white noise. Theory Probab. Appl. 2 (1957) 265–266. [CrossRef] [Google Scholar]
  5. J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier 24 (1974) 171–217. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 (1940) 115–118. [Google Scholar]
  7. C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré 40 (2004) 259–277. [Google Scholar]
  8. C. Lacaux, Series representation and simulation of multifractional Lévy motions. Adv. Appl. Probab. 36 (2004) 171–197. [CrossRef] [Google Scholar]
  9. P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Villars (1965). [Google Scholar]
  10. J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10 (2005) 254–262. [Google Scholar]
  11. J. Istas, On fractional stable fields indexed by metric spaces. Electron. Commun. Probab. 11 (2006) 242–251. [Google Scholar]
  12. J. Istas and C. Lacaux, On locally self-similar fractional random fields indexed by a manifold. Preprint (2009). [Google Scholar]
  13. B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Review 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Peltier and J. Lévy-Vehel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l’INRIA 2645 (1996). [Google Scholar]
  15. A. Valette, Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique 42 (1990) 747–760. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.