Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 195 - 218
DOI https://doi.org/10.1051/ps/2011156
Published online 08 February 2013
  1. R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 (2008) 1000–1034. [CrossRef] [MathSciNet] [Google Scholar]
  2. K.B. Athreya and P. Ney, A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 (1978) 493–501. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Bertail and S. Clémençon, Sharp bounds for the tails of functionals of markov chains, Teor. Veroyatnost. i Primenen 54 (2009) 609–619. [CrossRef] [Google Scholar]
  4. P. Cattiaux and A. Guillin, Deviation bounds for additive functionals of Markov processes. ESAIM : PS 12 (2008) 12–29. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J.-R. Chazottes, P. Collet, C. Külske and F. Redig, Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields 137 (2007) 201–225. [CrossRef] [Google Scholar]
  6. S. Clémençon, Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Probab. Lett. 55 (2001) 227–238. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Proc. Appl. 119 (2009) 897–923. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Douc, G. Fort, E. Moulines and P. Soulier, Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (2004) 1353–1377. [CrossRef] [Google Scholar]
  9. G. Fort and G.O. Roberts, Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565–1589. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Guillin, C. Léonard, L. Wu and N. Yao, Transportation-information inequalities for Markov processes. Probab. Theory Relat. Fields 144 (2009) 669–695. [CrossRef] [Google Scholar]
  11. A.M. Kulik, Exponential ergodicity of the solutions to SDE’s with a jump noise. Stoch. Proc. Appl. 119 (2009) 602–632. [CrossRef] [Google Scholar]
  12. S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III. J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987) 391–442. [Google Scholar]
  13. R. Höpfner and E. Löcherbach, Limit theorems for null recurrent Markov processes. Memoirs AMS 161 (2003). [Google Scholar]
  14. P. Lezaud, Chernoff and Berry-Esséen inequalities for Markov processes. ESAIM : PS 5 (2001) 183–201. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl. 118 (2008) 1301–1321. [CrossRef] [Google Scholar]
  16. E. Löcherbach, D. Loukianova and O. Loukianov, Deviation bounds in ergodic theorem for positively recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré 47 (2011) 425–449. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Nummelin, A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb. 43 (1978) 309–318. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Pal, Concentration for multidimensional diffusions and their boundary local times. To appear in Probab. Theory Relat. Fields (2011), DOI 10.1007/s00440-011-0368-1 [Google Scholar]
  19. D. Revuz, Markov chains, Revised edition. Amsterdam, North Holland (1984). [Google Scholar]
  20. E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer. Math. Appl. 31 (2000). [Google Scholar]
  21. T. Simon, Support theorem for jump processes. Stoch. Proc. Appl. 89 (2000) 1–30. [CrossRef] [Google Scholar]
  22. A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70 (1997) 115–127. [CrossRef] [MathSciNet] [Google Scholar]
  23. A.Yu. Veretennikov and S.A. Klokov, On subexponential mixing rate for Markov processes. Teor. Veroyatnost. i Primenen 49 (2004) 21–35. [CrossRef] [Google Scholar]
  24. L. Wu, A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré 36 (2000) 435–445. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.