Issue |
ESAIM: PS
Volume 15, 2011
|
|
---|---|---|
Page(s) | 197 - 216 | |
DOI | https://doi.org/10.1051/ps/2009016 | |
Published online | 05 January 2012 |
Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
1
Centre de Mathématiques, Faculté de Sciences et Technologie,
Université Paris-Est Val-de-Marne, 61 avenue du Général de Gaulle, 94010 Créteil, France; locherbach@univ-paris12.fr
2
Département de Mathématiques, Université d'Evry-Val d'Essonne, Bd François Mitterrand, 91025 Evry, France; dasha.loukianova@univ-evry.fr
3
Département Informatique, IUT de Fontainebleau, Université Paris-Est, route Hurtault, 77300 Fontainebleau, France; oleg@iut-fbleau.fr
Received:
25
March
2009
Revised:
6
October
2009
Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425–449].
Mathematics Subject Classification: 60F99 / 60J35 / 60J55 / 60J60 / 62G99 / 62M05
Key words: Diffusion process / adaptive estimation / regeneration method / mean square estimator / model selection / deviation inequalities
© EDP Sciences, SMAI, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.