Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 236 - 256
DOI https://doi.org/10.1051/ps/2011161
Published online 08 February 2013
  1. P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk. Math. Finance 9 (1999) 203–228. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Baíllo, Total error in a plug-in estimator of level sets. Statist. Probab. Lett. 65 (2003) 411–417. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Baíllo, J.A. Cuesta-Albertos and A. Cuevas, Convergence rates in nonparametric estimation of level sets. Statist. Probab. Lett. 53 (2001) 27–35. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Belzunce, A. Castaño, A. Olvera-Cervantes and A. Suárez-Llorens, Quantile curves and dependence structure for bivariate distributions. Comput. Stat. Data Anal. 51 (2007) 5112–5129. [CrossRef] [Google Scholar]
  5. G. Biau, B. Cadre and B. Pelletier, A graph-based estimator of the number of clusters. ESAIM : PS 11 (2007) 272–280. [Google Scholar]
  6. P. Billingsley, Probability and measure. Wiley Series in Probability and Mathematical Statistics, 3th edition, John Wiley & Sons Inc., A Wiley-Interscience Publication, New York (1995). [Google Scholar]
  7. B. Cadre, Kernel estimation of density level sets. J. Multivar. Anal. 97 (2006) 999–1023. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Cai and H. Li, Conditional tail expectations for multivariate phase-type distributions. J. Appl. Probab. 42 (2005) 810–825. [CrossRef] [Google Scholar]
  9. L. Cavalier, Nonparametric estimation of regression level sets. Statistics (Berl. DDR) 29 (1997) 131–160. [CrossRef] [Google Scholar]
  10. Y.P. Chaubey and P.K. Sen, Smooth estimation of multivariate survival and density functions. J. Statist. Plann. Inference 103 (2002) 361–376; C. R. Rao 80th birthday felicitation volume, Part I. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Cuevas and R. Fraiman, A plug-in approach to support estimation. Ann. Stat. 25 (1997) 2300–2312. [CrossRef] [Google Scholar]
  12. A. Cuevas and A. Rodríguez–Casal, On boundary estimation. Adv. Appl. Probab. 36 (2004) 340–354. [CrossRef] [Google Scholar]
  13. A. Cuevas, W. González-Manteiga and A. Rodríguez–Casal, Plug-in estimation of general level sets. Australian & New Zealand J. Statist. 48 (2006) 7–19. [Google Scholar]
  14. L. de Haan and X. Huang, Large quantile estimation in a multivariate setting. J. Multivar. Anal. 53 (1995) 247–263. [CrossRef] [Google Scholar]
  15. S. Dedu and R. Ciumara, Restricted optimal retention in stop-loss reinsurance under VaR and CTE risk measures. Proc. of Rom. Acad. Ser. A 11 (2010) 213–217. [Google Scholar]
  16. M. Denuit, J. Dhaene, M. Goovaerts and R. Kaas, Actuarial Theory for Dependent Risks. Wiley, (2005). [Google Scholar]
  17. P. Embrechts and G. Puccetti, Bounds for functions of multivariate risks. J. Multivar. Anal. 97 (2006) 526–547. [CrossRef] [Google Scholar]
  18. J.M. Fernández-Ponce and A. Suárez-Lloréns, Central regions for bivariate distributions. Austrian J. Stat. 31 (2002) 141–156. [Google Scholar]
  19. E.W. Frees and E.A. Valdez, Understanding relationships using copulas. North Amer. Actuar. J. 2 (1998) 1–25. [Google Scholar]
  20. J.A. Hartigan, Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82 (1987) 267–270. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.I. Koltchinskii, M-estimation, convexity and quantiles. Ann. Statist. 25 (1997) 435–477. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Laloë, Sur Quelques Problèmes d’Apprentissage Supervisé et Non Supervisé. Ph.D. thesis, University Montpellier II (2009). [Google Scholar]
  23. J.-C. Massé and R. Theodorescu, Halfplane trimming for bivariate distributions. J. Multivar. Anal. 48 (1994) 188–202. [Google Scholar]
  24. G. Nappo and F. Spizzichino, Kendall distributions and level sets in bivariate exchangeable survival models. Inform. Sci. 179 (2009) 2878–2890. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Polonik, Measuring mass concentrations and estimating density contour clusters – an excess mass approach. Ann. Stat. 23 (1995) 855–881. [CrossRef] [MathSciNet] [Google Scholar]
  26. W. Polonik, Minimum volume sets and generalized quantile processes. Stoch. Proc. Appl. 69 (1997) 1–24. [CrossRef] [Google Scholar]
  27. P. Rigollet and R. Vert, Optimal rates for plug-in estimators of density level sets. Bernoulli. 15 (2009) 1154–1178. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Rodríguez–Casal. Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico. Ph.D. thesis, University of Santiago de Compostela (2003). [Google Scholar]
  29. C. Rossi, Sulle curve di livello di una superficie di ripartizione in due variabili; on level curves of two dimensional distribution function. Giornale dell’Istituto Italiano degli Attuari 36 (1973) 87–108. [Google Scholar]
  30. C. Rossi, Proprietà geometriche delle superficie di ripartizione. Rend. Mat. (6) 9 (1976) 725–736 (1977). [MathSciNet] [Google Scholar]
  31. R. Serfling, Quantile functions for multivariate analysis : approaches and applications. Stat. Neerlandica 56 (2002) 214–232 Special issue : Frontier research in theoretical statistics (2000) (Eindhoven). [CrossRef] [Google Scholar]
  32. L. Tibiletti, On a new notion of multidimensional quantile. Metron 51 (1993) 77–83. [MathSciNet] [Google Scholar]
  33. A.B. Tsybakov, On nonparametric estimation of density level sets. Ann. Stat. 25 (1997) 948–969. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.