Free Access
Issue
ESAIM: PS
Volume 17, 2013
Page(s) 257 - 292
DOI https://doi.org/10.1051/ps/2011159
Published online 08 February 2013
  1. V. Belitsky, P. Ferrari, M. Menshikov and S. Popov, A mixture of the exclusion process and the voter model. Bernoulli 7 (2001) 119–144. [CrossRef] [MathSciNet] [Google Scholar]
  2. W. Böhm and S.G. Mohanty, On the Karlin–McGregor theorem and applications. Ann. Appl. Probab. 7 (1997) 314–325. [CrossRef] [Google Scholar]
  3. F. Comets and S.Yu. Popov, Limit law for transition probabilities and moderate deviations for Sinai’s random walk in random environment. Probab. Theory Relat. Fields 126 (2003) 571–609. [CrossRef] [Google Scholar]
  4. F. Comets and S.Yu. Popov, A note on quenched moderate deviations for Sinai’s random walk in random environment. ESAIM : PS 8 (2004) 56–65. [CrossRef] [EDP Sciences] [Google Scholar]
  5. F. Comets, M.V. Menshikov and S.Yu. Popov, Lyapunov functions for random walks and strings in random environment. Ann. Probab. 26 (1998) 1433–1445. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Dembo, N. Gantert, Y. Peres and Z. Shi, Valleys and the maximal local time for random walk in random environment. Probab. Theory Relat. Fields 137 (2007) 443–473. [CrossRef] [Google Scholar]
  7. N. Enriquez, C. Sabot and O. Zindy, Aging and quenched localization one-dimensional random walks in random environment in the bub-ballistic regime. Bulletin de la S.M.F. 137 (2009) 423–452. [Google Scholar]
  8. A. Fribergh, N. Gantert and S.Yu. Popov, On slowdown and speedup of transient random walks in random environment. Probab. Theory Relat. Fields 147 (2010) 43–88. [CrossRef] [Google Scholar]
  9. C. Gallesco, On the moments of the meeting time of independent random walks in random environment. arXiv:0903.4697 (2009). [Google Scholar]
  10. N. Gantert, Y. Peres and Z. Shi, The infinite valley for a recurrent random walk in random environment. Ann. Inst. Henri Poincaré 46 (2010) 525–536. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Greven and F. den Hollander, Large deviations for a random walk in random environment. Ann. Probab. 22 (1994) 1381 − 1428. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Hu and Z. Shi, Moderate deviations for diffusions with Brownian potentials. Ann. Probab. 32 (2004) 3191–3220. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Hughes, Random Walks and Random Environments. The Clarendon Press, Oxford University Press, New York. Random Environments 2 (1996). [Google Scholar]
  14. H. Kesten, M.V.Kozlov and F. Spitzer, A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145–168. [Google Scholar]
  15. J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s and the sample DF. I. Z. Wahrscheinlichkeitstheor. Verw. Gebiete 32 (1975) 111–131. [CrossRef] [Google Scholar]
  16. L. Saloff-Coste, Lectures on Finite Markov Chains. Lectures on probability theory and statistics, Saint-Flour, 1996, Springer, Berlin. Lect. Notes Math. 1665 (1997) 301–413. [CrossRef] [Google Scholar]
  17. Z. Shi, Sinai’s Walk via Stochastic Calculus, in Milieux Aléatoires Panoramas et Synthèses 12, edited by F. Comets and E. Pardoux. Société Mathématique de France, Paris (2001). [Google Scholar]
  18. Ya.G. Sinai, The limiting behavior of one-dimensional random walk in random medium. Theory Probab. Appl. 27 (1982) 256–268. [CrossRef] [Google Scholar]
  19. F. Solomon, Random walks in a random environment. Ann. Probab. 3 (1975) 1–31. [CrossRef] [Google Scholar]
  20. O. Zeitouni, Lecture Notes on Random Walks in Random Environment given at the 31st Probability Summer School in Saint-Flour, Springer. Lect. Notes Math. 1837 (2004) 191–312. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.