Free Access
Volume 15, 2011
Page(s) 390 - 401
Published online 05 January 2012
  1. T. Antal, P.L. Krapivsky and K. Mallick, Molecular spiders in one dimension. J. Stat. Mech. (2007). [Google Scholar]
  2. G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge (1995). [Google Scholar]
  3. C. Gallesco, S. Müller, S. Popov and M. Vachkovskaia, Spiders in random environment. arXiv:1001.2533 (2010). [Google Scholar]
  4. M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn 38 (1986) 227–238. [CrossRef] [Google Scholar]
  5. J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains. Graduate Text in Mathematics 40, 2nd edition, Springer Verlag (1976). [Google Scholar]
  6. J. Lamperti, Criterion for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl. 1 (1960) 314–330. [CrossRef] [Google Scholar]
  7. R. Lyons and Y. Peres, Probability on Trees and Networks. Cambridge University Press. In preparation. Current version available at rdlyons/, (2009). [Google Scholar]
  8. W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138. Cambridge University Press, Cambridge (2000). [Google Scholar]
  9. W. Woess, Denumerable Markov chains. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.