Free Access
Volume 15, 2011
Page(s) 402 - 416
Published online 05 January 2012
  1. G. Aletti, E.G. Bongiorno and V. Capasso, Statistical aspects of fuzzy monotone set-valued stochastic processes. application to birth-and-growth processes. Fuzzy Set. Syst. 160 (2009) 3140–3151. [Google Scholar]
  2. G. Aletti and D. Saada, Survival analysis in Johnson-Mehl tessellation. Stat. Infer. Stoch. Process. 11 (2008) 55–76. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Aquilano, V. Capasso, A. Micheletti, S. Patti, L. Pizzocchero and M. Rubbo, A birth and growth model for kinetic-driven crystallization processes, part i: Modeling. Nonlinear Anal. Real World Appl. 10 (2009) 71–92. [CrossRef] [Google Scholar]
  4. J. Aubin and H. Frankowska, Set-valued Analysis. Birkhäuser, Boston Inc. (1990). [Google Scholar]
  5. G. Barles, H.M. Soner and P.E. Souganidiss, Front propagation and phase field theory. SIAM J. Control Optim. 31 (1993) 439–469. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Burger, Growth fronts of first-order Hamilton-Jacobi equations. SFB Report 02-8, University Linz, Linz, Austria (2002). [Google Scholar]
  7. M. Burger, V. Capasso and A. Micheletti, An extension of the Kolmogorov-Avrami formula to inhomogeneous birth-and-growth processes, in Math Everywhere. G. Aletti et al. Eds., Springer, Berlin (2007) 63–76. [Google Scholar]
  8. M. Burger, V. Capasso and L. Pizzocchero, Mesoscale averaging of nucleation and growth models. Multiscale Model. Simul. 5 (2006) 564–592 (electronic). [Google Scholar]
  9. V. Capasso (Ed.) Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Mathematics in Industry 2, Springer-Verlag, Berlin (2003). [Google Scholar]
  10. V. Capasso, On the stochastic geometry of growth, in Morphogenesis and Pattern Formation in Biological Systems. T. Sekimura, et al. Eds., Springer, Tokyo (2003) 45–58. [Google Scholar]
  11. V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston Inc. (2005). [Google Scholar]
  12. V. Capasso and E. Villa, Survival functions and contact distribution functions for inhomogeneous, stochastic geometric marked point processes. Stoch. Anal. Appl. 23 (2005) 79–96. [CrossRef] [MathSciNet] [Google Scholar]
  13. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes Math. 580, Springer-Verlag, Berlin (1977). [Google Scholar]
  14. S.N. Chiu, Johnson-Mehl tessellations: asymptotics and inferences, in Probability, finance and insurance. World Sci. Publ., River Edge, NJ (2004) 136–149. [Google Scholar]
  15. S.N. Chiu, I.S. Molchanov and M.P. Quine, Maximum likelihood estimation for germination-growth processes with application to neurotransmitters data. J. Stat. Comput. Simul. 73 (2003) 725–732. [CrossRef] [Google Scholar]
  16. N. Cressie, Modeling growth with random sets. In Spatial Statistics and Imaging (Brunswick, ME, 1988). IMS Lecture Notes Monogr. Ser. 20, Inst. Math. Statist., Hayward, CA (1991) 31–45. [Google Scholar]
  17. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Probability and its Applications, I, 2nd edition, Springer-Verlag, New York (2003). [Google Scholar]
  18. N. Dunford and J.T. Schwartz, Linear Operators. Part I. Wiley Classics Library, John Wiley & Sons Inc., New York (1988). [Google Scholar]
  19. T. Erhardsson, Refined distributional approximations for the uncovered set in the Johnson-Mehl model. Stoch. Proc. Appl. 96 (2001) 243–259. [CrossRef] [Google Scholar]
  20. H.J. Frost and C.V. Thompson, The effect of nucleation conditions on the topology and geometry of two-dimensional grain structures. Acta Metallurgica 35 (1987) 529–540. [CrossRef] [Google Scholar]
  21. E. Giné, M.G. Hahn and J. Zinn, Limit theorems for random sets: an application of probability in Banach space results. In Probability in Banach Spaces, IV (Oberwolfach, 1982). Lecture Notes Math. 990, Springer, Berlin (1983) 112–135. [Google Scholar]
  22. J. Herrick, S. Jun, J. Bechhoefer and A. Bensimon, Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol. 320 (2002) 741–750. [CrossRef] [PubMed] [Google Scholar]
  23. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7 (1977) 149–182. [CrossRef] [MathSciNet] [Google Scholar]
  24. C.J. Himmelberg, Measurable relations. Fund. Math. 87 (1975) 53–72. [MathSciNet] [Google Scholar]
  25. S. Li, Y. Ogura and V. Kreinovich, Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables. Kluwer Academic Publishers Group, Dordrecht (2002). [Google Scholar]
  26. G. Matheron, Random Sets and Integral Geometry, John Wiley & Sons, New York-London-Sydney (1975). [Google Scholar]
  27. A. Micheletti, S. Patti and E. Villa, Crystal growth simulations: a new mathematical model based on the Minkowski sum of sets, in Industry Days 2003-2004 The MIRIAM Project 2, D. Aquilano et al. Eds., Esculapio, Bologna (2005) 130–140. [Google Scholar]
  28. I.S. Molchanov, Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley, Chichester (1997). [Google Scholar]
  29. I.S. Molchanov and S.N. Chiu, Smoothing techniques and estimation methods for nonstationary Boolean models with applications to coverage processes. Biometrika 87 (2000) 265–283. [CrossRef] [Google Scholar]
  30. J. Møller, Random Johnson-Mehl tessellations. Adv. Appl. Prob. 24 (1992) 814–844. [Google Scholar]
  31. J. Møller, Generation of Johnson-Mehl crystals and comparative analysis of models for random nucleation. Adv. Appl. Prob. 27 (1995) 367–383. [CrossRef] [Google Scholar]
  32. J. Møller and M. Sørensen, Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields. Scand. J. Stat. 21 (1994) 1–19. [Google Scholar]
  33. H. Rådström, An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3 (1952) 165–169. [Google Scholar]
  34. J. Serra, Image Analysis and Mathematical Morphology. Academic Press Inc., London (1984). [Google Scholar]
  35. L. Shoumei and R. Aihong, Representation theorems, set-valued and fuzzy set-valued Ito integral. Fuzzy Set. Syst. 158 (2007) 949–962. [CrossRef] [Google Scholar]
  36. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications. 2nd edition, John Wiley & Sons Ltd., Chichester (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.