Free Access
Issue
ESAIM: PS
Volume 15, 2011
Page(s) 402 - 416
DOI https://doi.org/10.1051/ps/2010009
Published online 05 January 2012
  1. G. Aletti, E.G. Bongiorno and V. Capasso, Statistical aspects of fuzzy monotone set-valued stochastic processes. application to birth-and-growth processes. Fuzzy Set. Syst. 160 (2009) 3140–3151.
  2. G. Aletti and D. Saada, Survival analysis in Johnson-Mehl tessellation. Stat. Infer. Stoch. Process. 11 (2008) 55–76. [CrossRef] [MathSciNet]
  3. D. Aquilano, V. Capasso, A. Micheletti, S. Patti, L. Pizzocchero and M. Rubbo, A birth and growth model for kinetic-driven crystallization processes, part i: Modeling. Nonlinear Anal. Real World Appl. 10 (2009) 71–92. [CrossRef]
  4. J. Aubin and H. Frankowska, Set-valued Analysis. Birkhäuser, Boston Inc. (1990).
  5. G. Barles, H.M. Soner and P.E. Souganidiss, Front propagation and phase field theory. SIAM J. Control Optim. 31 (1993) 439–469. [CrossRef] [MathSciNet]
  6. M. Burger, Growth fronts of first-order Hamilton-Jacobi equations. SFB Report 02-8, University Linz, Linz, Austria (2002).
  7. M. Burger, V. Capasso and A. Micheletti, An extension of the Kolmogorov-Avrami formula to inhomogeneous birth-and-growth processes, in Math Everywhere. G. Aletti et al. Eds., Springer, Berlin (2007) 63–76.
  8. M. Burger, V. Capasso and L. Pizzocchero, Mesoscale averaging of nucleation and growth models. Multiscale Model. Simul. 5 (2006) 564–592 (electronic). [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  9. V. Capasso (Ed.) Mathematical Modelling for Polymer Processing. Polymerization, Crystallization, Manufacturing. Mathematics in Industry 2, Springer-Verlag, Berlin (2003).
  10. V. Capasso, On the stochastic geometry of growth, in Morphogenesis and Pattern Formation in Biological Systems. T. Sekimura, et al. Eds., Springer, Tokyo (2003) 45–58.
  11. V. Capasso and D. Bakstein, An Introduction to Continuous-Time Stochastic Processes. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston Inc. (2005).
  12. V. Capasso and E. Villa, Survival functions and contact distribution functions for inhomogeneous, stochastic geometric marked point processes. Stoch. Anal. Appl. 23 (2005) 79–96. [CrossRef] [MathSciNet]
  13. C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes Math. 580, Springer-Verlag, Berlin (1977).
  14. S.N. Chiu, Johnson-Mehl tessellations: asymptotics and inferences, in Probability, finance and insurance. World Sci. Publ., River Edge, NJ (2004) 136–149.
  15. S.N. Chiu, I.S. Molchanov and M.P. Quine, Maximum likelihood estimation for germination-growth processes with application to neurotransmitters data. J. Stat. Comput. Simul. 73 (2003) 725–732. [CrossRef]
  16. N. Cressie, Modeling growth with random sets. In Spatial Statistics and Imaging (Brunswick, ME, 1988). IMS Lecture Notes Monogr. Ser. 20, Inst. Math. Statist., Hayward, CA (1991) 31–45.
  17. D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Probability and its Applications, I, 2nd edition, Springer-Verlag, New York (2003).
  18. N. Dunford and J.T. Schwartz, Linear Operators. Part I. Wiley Classics Library, John Wiley & Sons Inc., New York (1988).
  19. T. Erhardsson, Refined distributional approximations for the uncovered set in the Johnson-Mehl model. Stoch. Proc. Appl. 96 (2001) 243–259. [CrossRef]
  20. H.J. Frost and C.V. Thompson, The effect of nucleation conditions on the topology and geometry of two-dimensional grain structures. Acta Metallurgica 35 (1987) 529–540. [CrossRef]
  21. E. Giné, M.G. Hahn and J. Zinn, Limit theorems for random sets: an application of probability in Banach space results. In Probability in Banach Spaces, IV (Oberwolfach, 1982). Lecture Notes Math. 990, Springer, Berlin (1983) 112–135.
  22. J. Herrick, S. Jun, J. Bechhoefer and A. Bensimon, Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol. 320 (2002) 741–750. [CrossRef] [PubMed]
  23. F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7 (1977) 149–182. [CrossRef] [MathSciNet]
  24. C.J. Himmelberg, Measurable relations. Fund. Math. 87 (1975) 53–72. [MathSciNet]
  25. S. Li, Y. Ogura and V. Kreinovich, Limit Theorems and Applications of Set-Valued and Fuzzy Set-Valued Random Variables. Kluwer Academic Publishers Group, Dordrecht (2002).
  26. G. Matheron, Random Sets and Integral Geometry, John Wiley & Sons, New York-London-Sydney (1975).
  27. A. Micheletti, S. Patti and E. Villa, Crystal growth simulations: a new mathematical model based on the Minkowski sum of sets, in Industry Days 2003-2004 The MIRIAM Project 2, D. Aquilano et al. Eds., Esculapio, Bologna (2005) 130–140.
  28. I.S. Molchanov, Statistics of the Boolean Model for Practitioners and Mathematicians. Wiley, Chichester (1997).
  29. I.S. Molchanov and S.N. Chiu, Smoothing techniques and estimation methods for nonstationary Boolean models with applications to coverage processes. Biometrika 87 (2000) 265–283. [CrossRef]
  30. J. Møller, Random Johnson-Mehl tessellations. Adv. Appl. Prob. 24 (1992) 814–844. [CrossRef]
  31. J. Møller, Generation of Johnson-Mehl crystals and comparative analysis of models for random nucleation. Adv. Appl. Prob. 27 (1995) 367–383. [CrossRef]
  32. J. Møller and M. Sørensen, Statistical analysis of a spatial birth-and-death process model with a view to modelling linear dune fields. Scand. J. Stat. 21 (1994) 1–19.
  33. H. Rådström, An embedding theorem for spaces of convex sets. Proc. Am. Math. Soc. 3 (1952) 165–169. [CrossRef] [MathSciNet]
  34. J. Serra, Image Analysis and Mathematical Morphology. Academic Press Inc., London (1984).
  35. L. Shoumei and R. Aihong, Representation theorems, set-valued and fuzzy set-valued Ito integral. Fuzzy Set. Syst. 158 (2007) 949–962. [CrossRef]
  36. D. Stoyan, W.S. Kendall and J. Mecke, Stochastic Geometry and its Applications. 2nd edition, John Wiley & Sons Ltd., Chichester (1995).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.