Free Access
Volume 15, 2011
Page(s) 372 - 389
Published online 05 January 2012
  1. R. Abraham and J.-F. Delmas, Fragmentation associated with Lévy processes using snake. Probab. Th. Rel. Fiel 141 (2008) 113–154. [CrossRef] [Google Scholar]
  2. R. Abraham, J.-F. Delmas and G. Voisin, Pruning a Lévy random continuum tree. preprint [Google Scholar]
  3. R. Abraham and L. Serlet, Poisson snake and fragmentation. Elect. J. Probab. 7 (2002) 1–15. [Google Scholar]
  4. D. Aldous, The continuum random tree II: an overview. Proc. Durham Symp. Stochastic Analysis. Cambridge univ. press edition (1990) 23–70. [Google Scholar]
  5. D. Aldous, The continuum random tree I. Ann. Probab. 19 (1991) 1–28. [Google Scholar]
  6. D. Aldous, The continuum random tree III. Ann. Probab. 21 (1993) 248–289. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Aldous and J. Pitman, Inhomogeneous continuum trees and the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields 118 (2000) 455–482. [CrossRef] [Google Scholar]
  8. D. Aldous and J. Piman, The standard additive coalescent. Ann. Probab. 26 (1998) 1703–1726. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996). [Google Scholar]
  10. J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 102 (2006). [Google Scholar]
  11. D.A. Dawson, Measure-valued Markov processes, in École d'été de Probabilités de Saint-Flour 1991, Lect. Notes Math. Springer Verlag, Berlin 1541 (1993) 1–260. [Google Scholar]
  12. J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Proc. Rel. Fields. 14 (2008) 309–326. [Google Scholar]
  13. T. Duquesne and J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes 281. Astérisque (2002). [Google Scholar]
  14. T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Th. Rel. Fields 131 (2005) 553–603. [Google Scholar]
  15. T. Duquesne and M. Winkel, Growth of Lévy trees. Probab. Th. Rel. Fields 139 (2007) 313–371. [CrossRef] [Google Scholar]
  16. M. Jirina, Stochastic branching processes with continuous state space. Czech. Math. J. 83 (1958) 292–312. [Google Scholar]
  17. J. Lamperti, The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 7 (1967) 271–288. [CrossRef] [Google Scholar]
  18. J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Birkhäuser Verlag, Basel (1999). [Google Scholar]
  19. J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process. Ann. Probab. 26 (1998) 213–252. [Google Scholar]
  20. K.R. Parthasarathy, Probability measures on metric spaces. Probability and Mathematical Statistics 3, Academic, New York (1967). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.